Amr Qudeimat

Hematologic malignancies

6/11/2018

Blood cell lines

Lymphoid vs myeloid

Morphology.

Malignant vs Benign

Metastasis.

Clonality.

Leukemia vs Lymphoma

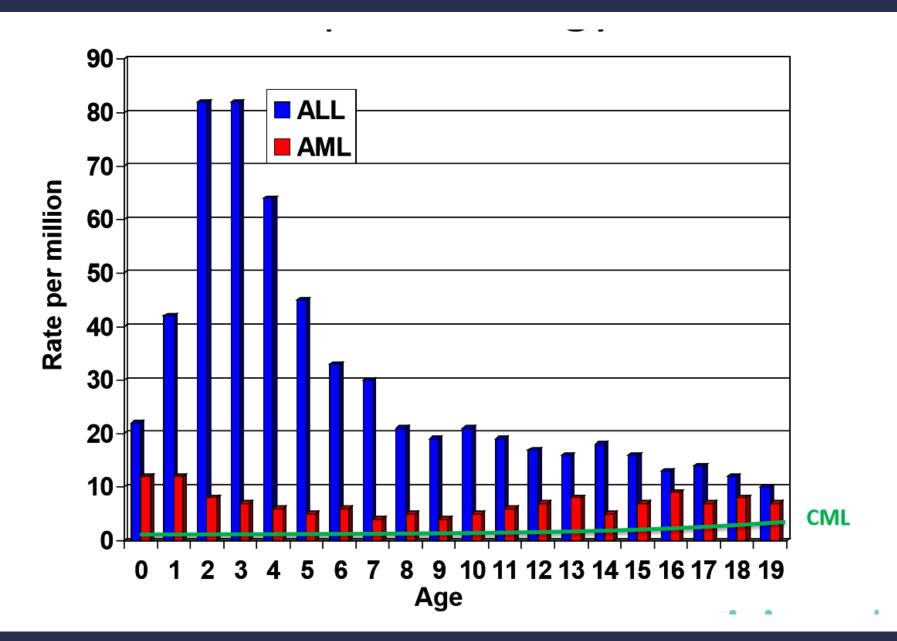
Location

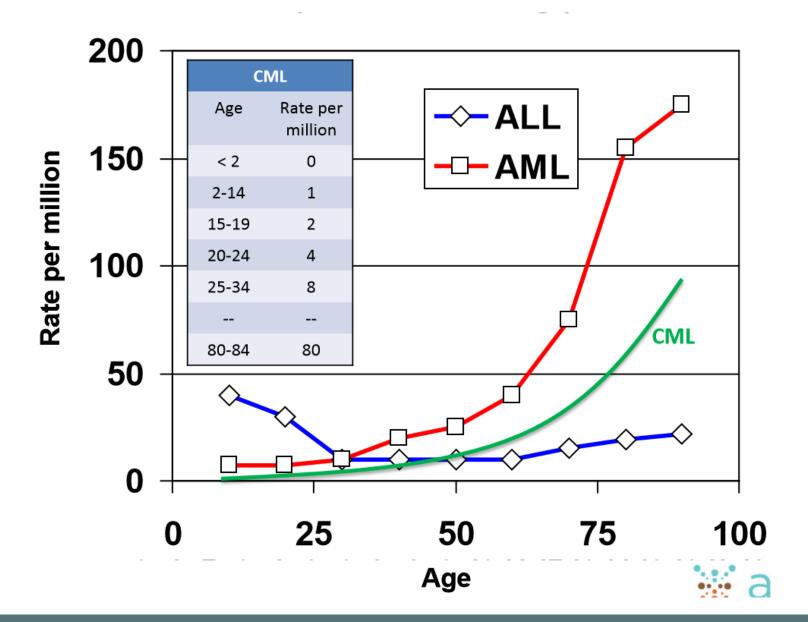
Phenotype.

MDS

Defined by:

- Dysplastic bone marrow changes.
- Increased blast population.
- Cytogenetic abnormalities.


De-novo vs Secondary.


Natural history.

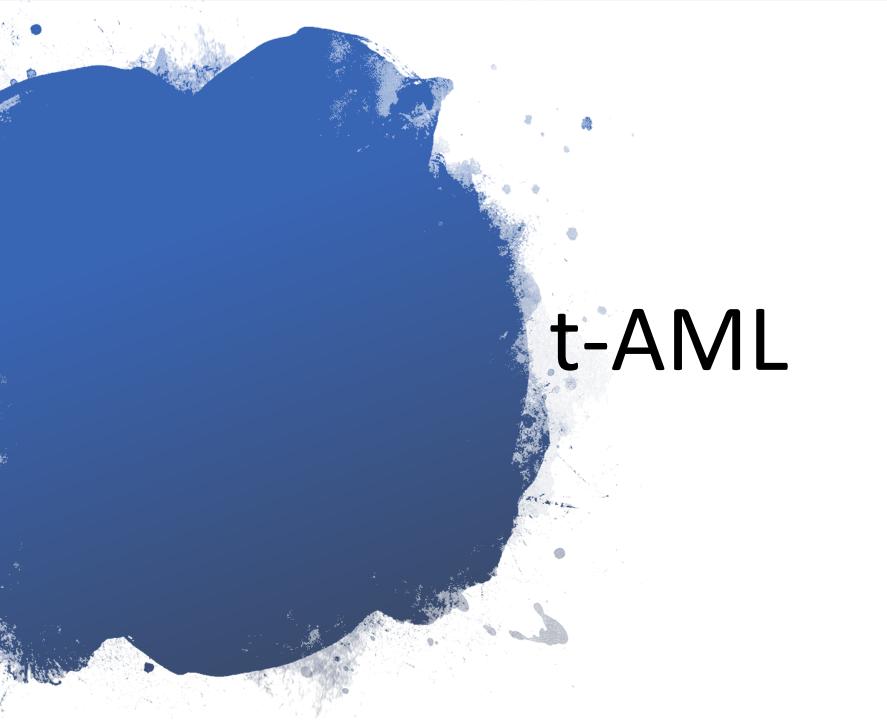
Treatment.

MDS

AML

AML

Concordance studies


Congential Bone marrow failure syndromes predispose to AML


FAB: morph/phenotype; 30% blasts

AML Subtype		Comments	
M 0	AML without differentiation	Difficult to distinguish from ALL; diagnosis requires expression of surface markers such as CD13, CD33 and CD117 (c -kit) in the absence of lymphoid differentiation	
M1	AML with minimal differentiation	Myeloperoxidase detectable by special stains/flow cytom etry	
M2	AML with differentiation	Auer rods; common t(8;21) -> AML1-ETO fusion, good prognosis, chloromas	
М3	Acute promyelocytic leukemia (APL), hypergranular type	Auer rods; DIC/bleeding; $t(15;17)$ -> PML-RAR α fusion, good prognosis with ATRA therapy	
M3v	APL, microgranular variant	Cytoplasm of promyelocytes demonstrates a fine granularity, and nuclei are often folded. Same clinical, cytogenetic and therapeutic implications as FAB M3.	
M4	Acute myelomonocytic leukemia (AMML)	Mixture of myeloblasts (at le ast 20%) and monocytic blasts; often with peripheral monocytosis	
M4Eo	AMML with eosinophilia	AMML with >5% abnormal eosinophil precursors in marrow (with basophilic granules), common inv(16), good prognosis	
М5	Acute monocytic leukemia	>80% of bone marrow non-erythroid cells are monocytic; M5a: monoblastic; M5b: monocytic (more differentiated); <i>for both M4 and M5</i> : infant age, MLL 11q23 rearrangements, CNS involvement, chloromas, gingival hyperplasia	
M6	Acute erythroblastic leukemia	Rare in children	
M 7	Acute megakaryoblastic leukemia	Seen mostly in children with Down syndrome (good prognosis if ≤ 2 years old; GATA1 mutations) or mosaicism for trisomy 21; rare in normal children (poor prognosis, $t(1;22) \rightarrow OTT-MAL$ fusion, often infants); myelofibrosis common	

WHO: clinical/molecular; 20% blasts

- Is the AML due to prior XRT/chemo?
 - If yes: Dx is Therapy-related AML (t-AML)
- Is the AML in a child with Down syndrome?
 - If yes: Dx is <u>DS-related AML</u>
- Is major ("Big 4") recurring abnormality present?
 - If yes: Dx is AML w/ t(8;21); inv(16); t(15;17); MLL-r
 - NOTE: No minimum blast % needed
- Is there dysplasia, prior MDS and/or MDS-related mutation (-7, del(5q), etc.)?
 - If yes, Dx is <u>AML with MDS-related changes</u>
 - If no to all: Dx is AML, NOS use FAB to subclassify

Cytogenetic	Molecular	FAB	Characteristics
t(8;21)	AML1-ETO (RUNX1- RUNX1T1)	M2	Auer Rods Chloromas Good px
t(15;17), variants	PML-RARA {variant}-RARA	М3	Granules/Auer rods DIC/bleeding Good px (with ATRA/Arsenic)
inv(16)/ t(16;16)	CBFB-MYH11	M4Eo	Eos w/ baso granules Chloromas Good px
abnormal 11q23	MLL-{partner}	M4 M5	Infant WBC/skin/CNS/gums t-AML after topo II inh

_

Ph+ (9;22) BCR-ABL

Chronic, accelerated and blast crisis phases.

Treatment options.

ALL

AML vs ALL

Predisposing conditions: TP53 mutations, immunodeficiencies.

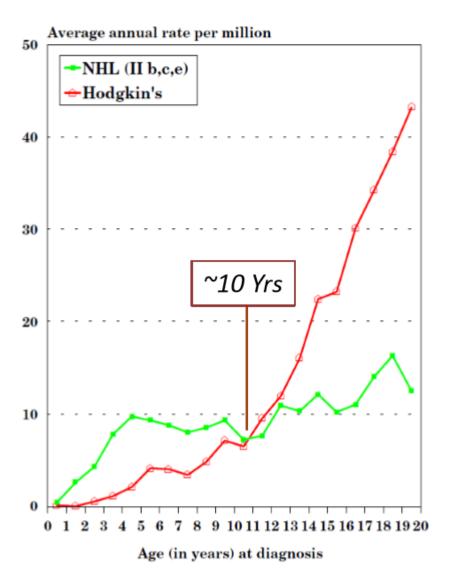
May involve CNS or testis.

Ph+ ALL.

Mainstay of treatment is chemotherapy with overall long term survival over 90%.

Some high risk patients proceed to BMT.

Age 0-14


Leukemia	32%

- CNS 20
- Lymphoma 11
- Neuroblastoma 8
- Rhabdo/STS 7
- Kidney6
- Bone6
- Germ-cell
- Retinoblastoma 3
- Liver

Age 15-19

Lymphoma	25%
Germ cell	14
Leukemia	12
CNS	10
 Soft-tissue Sarcoma 	8
Bone	8
Thyroid carcinoma	7
Melanoma	7

	T cell derived	B cell derived
Immature	T-lymphoblastic	B-lymphoblastic
Mature	Anaplastic Large Cell	Burkitt Diffuse Large B cell Hodgkin

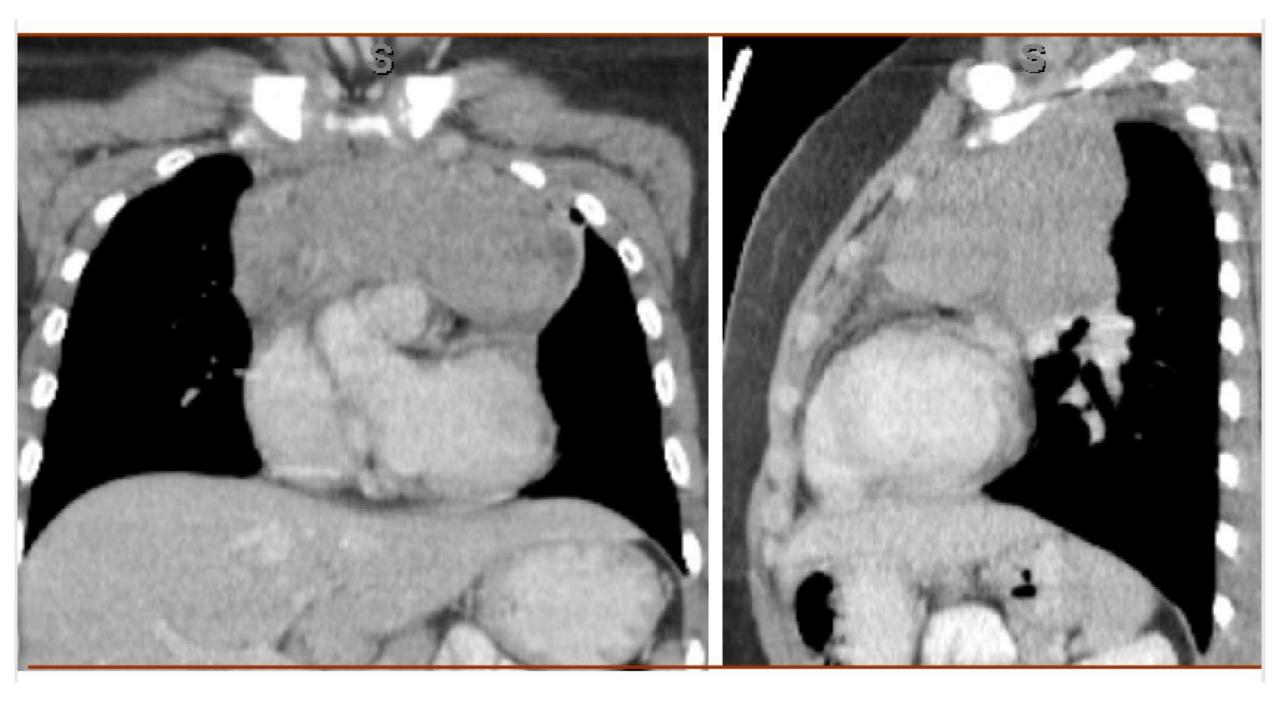
Hodgkin Lymphoma

Most commonly presents with painless neck or chest adenopathy.

Many cases are associated with EBV infection.

B symptoms.

Classic (most common) and NLPHL


Excellent outcomes in low stage disease.

Malignant cell of classic Hodgkin is Hodgkin Reed-Sternberg (owl eye)

Clinical Presentation of Hodgkin Lymphoma

- 1. Painless lymphadenopathy
- 2. Mediastinal mass ($^{2}/3$)
- 3. Constitutional symptoms
- B symptoms are prognostic
 - Weight loss of 10% in 6 months
 - Drenching night sweats
 - Unexplained fevers >38°C
 for 3 consecutive days

- Others are not prognostic
 - Fatigue, anorexia, mild weight loss
 - Pain immediately following alcohol
 - Pruritus: generalized, can be severe, more often in advanced disease
- Markers of inflammation and RES activation (↑CRP, ESR, ferritin, copper)
- Anemia of chronic inflammation
- Immune dysregulation: autoimmune neutropenia, AIHA, ITP, nephrotic syndrome

Burkitt Lymphoma

Mature NH B cell lymphoma.

Very high proliferation rate, early diagnosis and treatment matters.

High risk for tumor lysis syndrome.

Most famous associated genetic abnormality t(8;14).

Excellent prognosis if treatment not delayed.

<u>Sporadic</u> <u>Endemic</u>

EBV 15% 95%

Geography North America, Equatorial Africa, Brazil

Europe Turkey, New Guinea

Incidence 0.2/100,000 10/100,000

Location Abdominal mass Jaw mass, abdomen,

LN, Marrow, CNS CNS in 1/3

ovaries

Is a mature T cell Lymphoma.

Anaplastic Large cell Lymphoma

Most common genetic abnormality is t(2;5) or ALK (anaplastic lymphoma kinase)