

Newborn and infants

Adults

Genetic Diseases - Hemochromatosis - Clinical Manifestations

Iron Overload Disorders

Transfusion

Ineffective erythropoiesis

African iron overload

Hemochromatosis

Incidence is population-dependent

Inheritance is autosomal recessive

HFE gene mutations are present

 Functional defect results in increased iron absorption

Very common in Caucasians

Heterozygote - 1 in 12 Homozygote - 1 in 400

HFE Gene Mutations

Abnormal intestinal epithelial protein

Increased intestinal iron absorption

Iron-induced tissue injury and fibrogenesis

Stages of Hemochromatosis

Iron overload without organ injury

 Iron overload with organ injury without clinical manifestations

 Iron overload with organ injury and clinical manifestations

Genetic Diseases – Hemochromatosis - Normal Iron Balance

Ingested 10-20 mg/day

Absorbed 1-2 mg/day

Lost Gut, skin, urine - 1-2 mg/day Menses - 30 mg/month

Iron Transport and Storage

Transport Transferrin - two iron atoms

Total body iron - 4g

Phenotype Expression

Men > women

Increases with age

Correlates with amount of iron in the diet

 Chronic hemolysis, alcoholism, steatohepatitis, hepatitis C

Hereditary Forms of Iron Overload

Familial or hereditary forms of hemochromatosis

- Hereditary hemochromatosis (HFE-related)
 - C282Y homozygosity
 - C282Y / H63D compound heterozygosity
- Hereditary hemochromatosis, non-HFE related
- Juvenile hemochromatosis
- Neonatal iron overload
- Autosomal dominant hemochromatosis (Solomon islands)

Acquired Causes of Iron Overload

- Acquired iron overload
 - Iron-loading anemias
 - Thalassemia major
 - Sideroblastic anemia
 - Chronic hemolytic anemia
 - Dietary iron overload
 - Chronic liver diseases
 - Hepatitis C
 - Alcoholic liver disease
 - NAFLD

Genetic Diseases – Hemochromatosis – Iron Measurements

	Normal	Hereditary
Sorum	Normal	nemocnionalosis
Iron		
	60-180	180-300
	00-100	
(µmol/L)	11-32	32-54
Transferrin saturation %	20-50	55-100
Ferritin		
Males (ng/mL or µg/L)	20-200	300-3000
Females (ng/mL or μg/L)	15-150	250-3000
Liver		
Iron stains	0,1+	3+, 4+
Iron concentration		
(µg/g dry weight)	300-1500	3000-30,000
(µmol/g dry weight)	5-27	53-536
Iron index		
(µmol/g dry weight	<1.1	>1.9
÷age in years)		

Diagnosis

Homozygous C282Y HFE mutations

 Heterozygous for both C282Y and H63D mutations

Genetic Diseases – Hemochromatosis - Iron Balance Values

	Serum iron (µg/dL)	TIBC (μg/dL)	Transferrin saturation (%)	Ferritin (µg/dL)	Quantitative hepatic iron (µg/g dry wt)
Norma	J				
	60-180	230-370	20-50	20-200	300-1500
Hemoc	hromate	osis			
	>180	<300	>50	>300	>3000

Genetic Diseases – Hemochromatosis – Diagnostic Testing

Indications for HFE Genetic Testing in Appropriate Clinical Setting

- Family history of hemochromatosis
- Chronic liver disease
- Abnormal liver tests
- Abnormal serum iron studies
- Diabetes mellitus
- Arthropathy
- Heart disease

Interpretation of Ferritin Levels

Normal ferritin and \downarrow iron Chronic disease

 \downarrow Ferritin and \downarrow iron

Iron deficiency

Hepatic Iron Index Liver iron ÷ Age (µmol/g) (yr)

Phlebotomy

Acute

1 unit (250 mg Fe) weekly or biweekly until mildly anemic

Maintenance

Once iron stores are depleted (ferritin <50ng/ml, transferrin sat <50%) continue with phlebotomy every 2-3 months. Monitor hemoglobin, ferritin and transferrin saturation

Bacon BR and Britton RS, 2002

Phlebotomy Improves Survival

Preventable: all clinical manifestations

Reversible: cardiac dysfunction, glucose intolerance, hepatomegaly, skin pigmentation

Irreversible: cirrhosis risk of hepatocellular carcinoma arthropathy, hypogonadism

Iron Depletion Improves Survival

Niederau C, et al. N Engl J Med 1985; 313:1256

Response to Phlebotomy

Edwards CQ, et al. Hospital Practice 1991; 26:30

Trichrome Stain - Liver

Trichrome Stain - Liver

Liver Biopsy - Prussian Blue Stain for Iron

Copper Overload Disorders

Normal Copper Balance

Apoceruloplasmin

Copper (Cu) 1.5 – 4.0 mg/day

> Cu excreted in bile

Ceruloplasmin

Urine output (<70 μg/day) Free Cu absorbed

Cu excreted in stool

Ceruloplasmin A blue α₂ globulin Binds copper irreversibly Normal serum level = 20-40 mg/dL Decreased serum ceruloplasmin is seen in:

- Wilson's disease
 95% of homozygotes
 20% of heterozygotes
- Protein loss
- Hepatic failure
- Menkes syndrome

Normal Copper Balance

Abnormal Copper Balance

to cell stress and death

Usual Features in Homozygotes	Usual Features in Heterozygotes
Ceruloplasmin <20 mg/dl	Rarely
Urine copper >100 mg/day	Rarely
Kayser-Fleischer rings	Never
Hepatic histology abnormal	Never
Hepatic copper >250 mg/g	Rarely

Indications for Testing

- Liver disease in children, adolescents, young adults
- Hemolysis with liver disease
- Neurologic disease in the young
 - Parkinsonian tremor
 - Gait disturbance
 - Psychosis or other mental disorders
- Fanconi syndrome
- Hypouricemia
- Kayser-Fleischer rings
- Sunflower cataracts
- Siblings of affected patients

Presentation	<u> </u>
	2
	$\mathbf{\mathbf{\nabla}}$

Liver	Abnormal liver tests Acute hepatitis Acute hepatic failure Liver disease with hemolysis Chronic hepatitis Cryptogenic cirrhosis
CNS	Parkinson-like disorders Psychiatric disorders
Eye	Kayser-Fleischer rings Sunflower cataracts
Kidney	Fanconi syndrome with hypouricemia

Diagnostic Testing

Ceruloplasmin Slit lamp examination Urine copper

> Ceruloplasmin <20 mg/dL (5% of Wilson's patients have normal ceruloplasmin levels) Kayser-Fleischer rings Urine copper >100 μg/24 hr

Liver biopsy with quantitative copper determination confirms diagnosis

Management

Therapy	Chelation + pyridoxine
	Zinc
	Avoid high copper foods
	Transplantation in selected cases
	Family screening

Monitoring

Urine copper Non-ceruloplasmin copper Do NOT monitor Kayser-Fleischer rings

Results

Treatment prevents disease Improves liver and CNS disease Prolongs life

