

Types of cysts

1-Simple Cysts

2-Dialysis-associated acquired cysts

3-Autosomal Dominant (Adult) Polycystic Kidney Disease

4-Autosomal Recessive (Childhood) Polycystic Kidney Disease

5-Medullary Cystic Disease

Simple renal Cysts

1-Simple Cysts

•Multiple or single

- 1-5 cm in diameter
- filled with clear fluid.
- confined to the cortex.
- no clinical significance.

Jollow up by imaging techniques

- Usually discovered incidentally or because of hemorrhage and pain
- Importance: to differentiate from kidney tumors

Cysts associated with chronic dialysis

, 0

3- Autosomal Dominant (Adult) Polycystic Kidney Disease А In Corke 2 meddla. **Imultiple bilateral cysts** eventually destroy the renal parenchyma. COMMON □Incidence (1: 500-1000) persons ↓ 10% of chronic renal failure.
↓ the one of 50 yrs. **inheritance of one of 2 autosomal dominant genes:** (1)- *PKD1*: 85-90% (encodes polycystin-1) (2)- *PKD2* :10-15% (encodes *polycystin- 2*). +tubules are aborand from early time, but progress is 2 lune man + estations

Ouring aduldhood i.e > disease was always found. 3-Autosomal Dominant (Adult) Polycystic Kidney Disease – cont. **Clinical presentation**: asymptomatic until the 4th decade dre to show for sign Symptoms: flank pain , heavy dragging sensation, abdominal mass, hemorrhage, obstruction, Intermittent gross hematuria **Complications** 1- hypertension (75%) 2- urinary infection - small 10 of Patients 3- vascular aneurysms of circle of Willis (10% -30%) → (subarachnoid hemorrhage). Sary ?? 4- renal failure at age 50 Transplantation is needed.

4-Autosomal Recessive (Childhood) Polycystic Kidney Disease manfestations appen early Autosomal recessive *1:20,000 live births. Types: perinatal, neonatal, infantile, and juvenile. Carlier Carlier Trog wsis *1:20,000 live births. Since AR **Mutations in** *PKHD1* gene coding for *fibrocystin*. Fibrocystin may be involved in the function of cilia in tubular epithelial cells.

Normal term infant kidneys

5- Medullary Cystic Disease

O Clinical features:

polyuria and polydipsia (↓ tubular function). ⇒ diluted unit

and merstilied renal failure over 5-10-year Jubrosis Learning to A positive family history and chronic renal failure in young

Rend Jailure A positive family history and unexplained chronic renal failure in young patients should lead to suspicion of medullary cystic disease.

URINARY OUTFLOW OBSTRUCTION an obstruction anywhere in the affect that

•Renal Stones (Urolithiasis)

•stone formation at any level in the urinary collecting system.

- •Most common in kidney.
- •(1%) of all autopsies. Can be asymptometic
- Symptomatic more common in men
- Familial tendency toward stone formation
- •unilateral in 80%
- •Variable sizes

Stone = inorganic salt (98%) + organic matrix (2%) - mnercels

*****Types are according to inorganic salt:

1- calcium oxalate/ calcium oxalate+ calcium phosphate-- (80%).

2- Struvite (magnesium ammonium phosphate) (<10%)

3- uric acid (6-7%)

4- cystine stones (2%) - least Common

Causes of Renal Stones

1-increased urine concentration of stone's constituents exceeds solubility in urine (supersaturation).*

50% of <u>calcium</u> stones pts have hypercalciuria with no hypercalcemia.

•5% to 10% \rightarrow hypercalcemia and hypercalciuria.

*

2-The presence of a nidus

•Urates provide a nidus for calcium deposition.

Desquamated epithelial cells

Bacterial colonies

3-urine pH

Magnesium ammonium phosphate (struvite) stones occur with alkaline urine due to UTIs.

Uric acid stones form in **acidic urine** (under pH 5.5).

4-infections

urea-splitting bacteria (Proteus vulgaris and staph). have grease enzyme

Hydronephrosis

Hydronephrosis

•dilation of the renal pelvis and calyces due to obstruction, with accompanying atrophy of kidney parenchyma. Ddue to bad outflow of urm

•sudden or insidious

•Obstruction at any level from the urethra to the renal pelvis.

•The most common causes are :

Die; ureter, urinag bladder, urettura.

Hydronephrosis of the kidney, with marked dilation of the pelvis and calyces and thinning of renal parenchyma.

© Elsevier. Kumar et al: Robbins Basic Pathology 8e - www.studentconsult.com

<u>examples</u>

- Atresia of urethra
- Valve formations in ureter or urethra
- Aberrant renal artery compressing ureter
- •Renal ptosis with torsion or kinking of ureter

- Examples:
- •Foreign bodies: Calculi, necrotic apillae · Stores
- Tumors: prostatic hyperplasia, prostate cancer, bladder tumors, cervix or uterus cancer.
- Inflammation: Prostatitis, ureteritis, urethritis,
- Neurogenic: Spinal cord damage
- Normal pregnancy: rare, mild and reversible