Control of blood tissue blood flow

Qbjectives

- List factors that affect tissue blood flow.
- Describe the vasodilator and oxygen demand theories.
- Point out the mechanisms of autoregulation.
- Describe how angiogenesis occurs.
- Inter-relat how various humoral factors affect blood flow.

Local Control of Blood Flow

- Each tissue controls its own blood flow in proportion to its needs.
- Tissue needs include:
 - 1) delivery of *oxygen* to tissues
 - 2) delivery of *nutrients* such as glucose, amino acids, etc.
 - 3) removal of carbon dioxide hydrogen and other *metabolites* from the tissues
 - 4) transport various *hormones* and other substances to different tissues
- Flow is closely related to *metabolic rate of tissues*.

Magnitude & Distribution of CO at Rest & During Moderate Exercise

Variations in Tissue Blood Flow

			ml/min/
	Per cent	ml/min	100 gm
Brain	14	700	50
Heart	4	200	70
Bronchi	2	100	25
Kidneys	22	1100	360
Liver	27	1350	95
Portal	(21)	(1050)	
Arterial	(6)	(300)	
Muscle (inactive state)		750	4
Bone	5	250	3
Skin (cool weather)	6	300	3
Thyroid gland	1	50	160
Adrenal glands	0.5	25	300
Other tissues	3.5	175	1.3
Total	100.0	5000	

Acute Control of Local Blood Flow

- Increases in *tissue metabolism* lead to increases in blood flow.
- Decreases in oxygen availability to tissues increases tissue blood flow.
- Two major theories for local blood flow are:
 - 1) The vasodilator theory
 - 2) Oxygen demand theory

Effect of Tissue Metabolic Rate on Tissue Blood Flow

Effect of Tissue Oxygen concentration on Blood Flow

Tissue Oxygen Concentration ← ↑ Blood Flow

Relationship between Pressure, Flow, and Resistance

- \blacksquare F= \triangle P/R
- Flow (F) through a blood vessel is determined by:
 - 1) The *pressure difference* (Δ P) between the two ends of the vessel
 - 2) Resistance (R) of the vessel

Vasodilator Theory for Blood Flow Control

Local Vasodilators: Adenosine, CO2, Lactic acid, ADP compounds, Histamine, K⁺ ions, H⁺ ions, Prostacyclin, Bradykinin, and Nitrous oxid (NO)

Oxygen Demand Theory for Blood Flow Control

Autoregulation of Blood Flow

Autoregulation - ability of a tissue to maintain blood flow relatively constant over a wide range of arterial pressures.

Blood Flow Autoregulation Theories

- *Metabolic theory* suggests that as arterial pressure is decreased, oxygen or nutrient delivery is decreased resulting in release of a vasodilator.
- Myogenic theory proposes that as arterial pressure falls the arterioles have an intrinsic property to dilate in response to decreases in wall tension.
- Certain tissues have other mechanisms for blood flow control the kidneys have a feedback system between the tubules and arterioles and the brain blood flow is controlled by carbon dioxide and hydrogen ion conc.

Laplace's Law: Myogenic mechanism

Myogenic Mechanism

Myogenic Mechanism

Long-term Regulation of Blood Flow

- Long-term regulatory mechanisms which control blood flow are more effective than acute mechanism.
- Long-term local blood flow regulation occurs by changing the degree of vascularity of tissues (*size and number of vessels*).
- Oxygen is an important stimulus for regulating tissue vascularity.

Long-term Regulation of Blood Flow

Angiogenesis

- Angiogenesis is the growth of new blood vessels.
- Angiogenesis occurs in response to angiogenic factors released from:
 - 1) ischemic tissue
 - 2) rapidly growing tissue
 - 3) tissue with high metabolic rates
- Most angiogenic factors are *small peptides* such as vascular endothelial cell growth factors (VEGF), fibroblast growth factor (FGF), and angiogen.
- Example of angiogenesis is Retrolental Hyperplasis

Humoral Regulation of Blood Flow

Vasoconstrictors

Norepinephrine and epinephrine

Angiotensin

Vasopressin

Endothelin

Vasodilator agents

Bradykinin

Serotonin

Histamine

Prostaglandins

Nitric oxide

Blood Flow: Skeletal Muscle Regulation

- Muscle blood flow can increase tenfold or more during physical activity as vasodilation occurs
 - Low levels of epinephrine bind to β receptors
 - Cholinergic receptors are occupied
- Intense exercise or sympathetic nervous system activation result in high levels of epinephrine
 - High levels of epinephrine bind to α receptors and cause vasoconstriction
 - This is a protective response to prevent muscle oxygen demands from exceeding cardiac pumping ability

Exercise and Muscle Blood Flow

Muscle Blood Flow During Exercise

- Can 20 fold during exercise.
- Muscle makes up a large portion of body mass Þ great effect on Cardiac output.
- Resting blood flow = 3 to 4 ml/min/100 gm muscle.
- Oxygen delivery can be increased by increasing the extraction ratio from 25% up to 75%
- Capillary density 's markedly.
- Most blood flow occurs between contractions.

Local Regulation of Muscle Blood Flow during Exercise

- $\triangleright \downarrow O_2$ during exercise affects vascular smooth muscle directly \Rightarrow vasodilation.
- ➤ Vasodilators (which ones?)
 - 1. K⁺
 - 2. Adenosine
 - 3. Osmolality
 - 4. EDRF (nitric oxide)

Nervous Regulation

- Sympathetic release of norepinephrine (mainly α).
- Adrenals release epinephrine (β and α) norepinephrine (α + a little β).
 - $\protect\$ β receptors \Rightarrow vasodilation mainly in muscle and the liver.

Arteriole Resistance: Control of Local Blood Flow

Thank You

