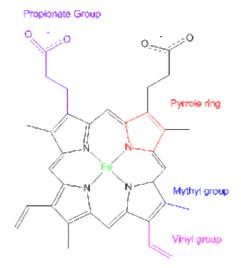


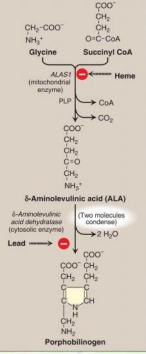
Heme synthesis

Heme structure

- It is a complex of protoporphyrin $IX + Iron (Fe^{+2})$.
- The porphyrin is **planar** and consists of **four pyrrole** rings.
- Each pyrrole ring can bind with **two** substituents.
- **Two** rings have a **propionate** group each.
- The molecule is **hydrophobic**.
- Fe has **six** coordinates of binding.

- The major sites of heme biosynthesis are in the:
 - 1- Liver, which synthesizes several heme proteins (particularly the CYP proteins).

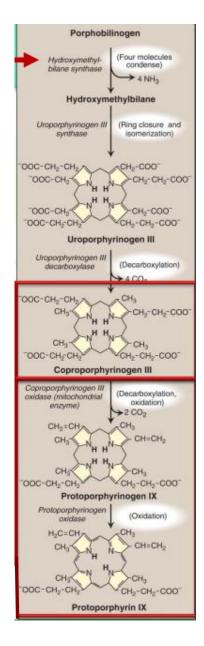

The rate of heme synthesis in the liver is highly **variable**; it depends on the body and its conditions.


2- Erythrocyte-producing cells, which participate mainly in Hb synthesis.

Relatively **constant** production that matches the rate of **globin** synthesis. It is regulated at **multiple** points.

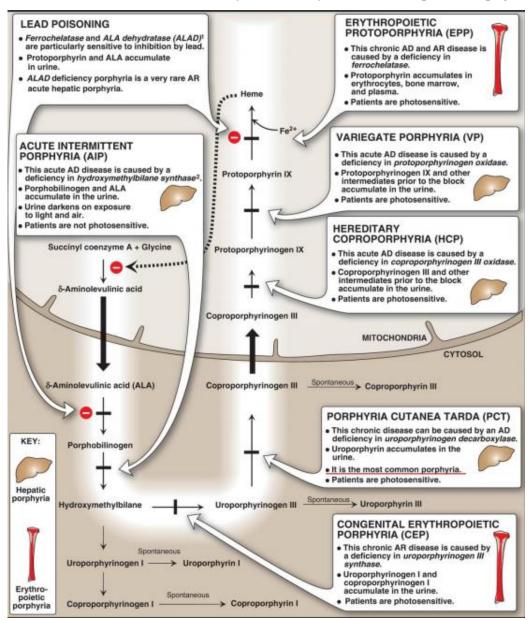
Steps of Heme Biosynthesis

- The reactions of heme biosynthesis **first** occur in the **mitochondria**, it continues in the **cytosol**. Finally, it returns to the **mitochondria**.
 - 1- The first reaction is catalyzed by ALAS1 (*liver-specific*) or ALAS2 (*erythrocytes-specific*). It is the rate-limiting and committed step which requires vitamin B6 (*pyridoxal phosphate*) and it takes place in the mitochondria.
 - 2- The first reaction takes place in the mitochondria, and then ALA moves out of it. Two ALA molecules condense to form Porphobilinogen in the cytosol.


- **3-** Four molecules of **Porphobilinogen** form **uroporphobilinogen** III eventually, catalyzed by a **deaminase**.
- 4- Further reactions take place in the cytosol until Coproporphyrnogen III is formed which is then moved back into mitochondria.
- 5- The last reaction is **spontaneous** but can be catalyzed by **ferrochelatase**.
- **<u>Note:</u>** Protoporphorin is what gives the blood its red color.

Regulation

- ALAS1 (liver-specific) is **inhibited** by **hemin** through:
 - **a-** Degradation of mRNA.
 - **b-** Inhibition of mitochondrial transport to the cytosol.
- Some drugs may **induce** ALAS1 expression.
- ALAS2 (erythrocyte specific) is regulated by the **level of iron**.
- In the liver, the first reaction is what gets regulated. In erythrocytes, synthesis is regulated at ferrochelatase and porphobilinogen deaminase.


Porphyrias

- Porphyrias are inherited or acquired disorders caused by a **deficiency** of any **enzyme** in the heme biosynthetic pathway resulting in **elevations** in the **serum** and **urine** content of the **intermediates** in heme synthesis.
- Porphyria = purple.
- These disorders are classified as either **erythroid** or **hepatic** (acute or chronic); there's a lot of variabilities.
- Individuals with an enzyme defect prior to the production of Tetrapyrroles (*i.e.* before Hydroxymethylbilane production) manifest abdominal and neuropsychiatric signs. Whereas those with enzyme defects leading to the accumulation of tetrapyrrole intermediates (*i.e. after Hydroxymethylbilane*) show photosensitivity.

The doctor said to focus on the following things from the picture:

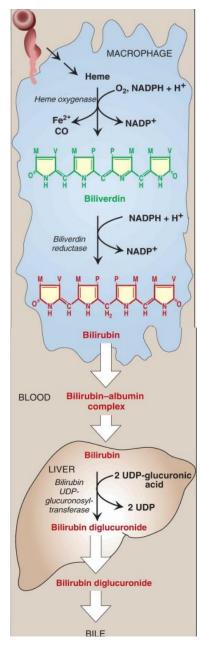
- 1- Porphyria Cutanea Tarda
- 2- Acute intermittent porphyria
- 3- Whether the disorder causes photosensitivity or not.
- 4- Deaminase, ferrochelatase, and ALA synthase enzymes from the previous page.

Treatment of Porphyrias

- 1- Hemin or hematin: they strongly inhibit the activity of ALAS, thus reducing the accumulation of the heme biosynthesis intermediates.
- **2- Glucose**: fasting (hypoglycemia) exacerbates acute porphyria attack due to **activation** of the transcription factor, **PGC-1***α*, in the **liver** which **induces** synthesis of gluconeogenic genes and the **ALAS1** gene resulting in accumulation of heme intermediates. Therefore, in **porphyrias**, giving glucose would **reduce** the synthesis of **the ALAS1** gene in the liver.

Heme Degradation (Catabolism)

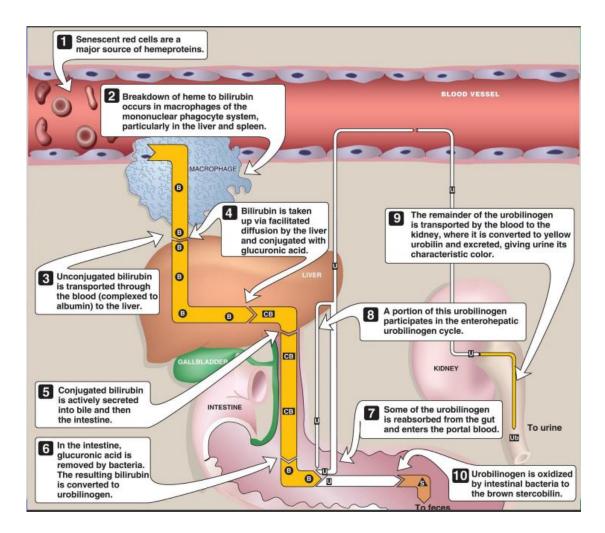
Challenges


- RBCs are the largest storage place of heme.
- Erythrocytes are mainly destroyed by macrophages in the **spleen** and **bone marrow**, releasing **hemoglobin**, which is degraded to **heme.** The **protein** is metabolized into **amino acids**.
- **6 g/day** of hemoglobin are turned over, but:
 - 1- The porphyrin ring is **hydrophobic**; it cannot be excreted alone.
 - 2- Iron must be **conserved**.

Heme degradation

- Heme needs to be **hydrophilic** to be excreted.
- Heme oxygenase catalyzes 3 reactions catalyzed by NADPH resulting in breaking the heme into a linear molecule.
- This is the only process in the body that forms **CO**.
- It goes through many colors:
 - **1- Red**: from the released Hb.
 - **2- Blue**: as Hb loses oxygen, the iron becomes in the ferric state.
 - **3- Green**: from the formation of biliverdin.
 - 4- Yellow: from the formation of bilirubin.

Transport of Bilirubin


- Bilirubin is released into the **blood** complexed with **albumin** to the liver.
 - ⇒ Salicylates and sulfonamides can displace bilirubin from albumin permitting bilirubin to enter the central nervous system (CNS). This causes the potential for neural damage in infants.

- In the **liver**, bilirubin gets conjugated with 2 **glucuronide** molecules forming **Bilirubin Diglucuronide**, where it then passes with **bile** into the **intestine**.
 - ⇒ Crigler-Najjar (I, II) and Gilbert syndrome are disorders of bilirubin conjugation.
 - ⇒ Defection in bilirubin transport into bile causes **Dubin-Johnson syndrome**.
 It is manifested by chronic conjugated hyperbilirubinemia.

The following picture shows all the steps in Heme catabolism:

Any defect in these steps would cause different types of jaundice.

Measurement of bilirubin

- It is done via a reaction known as **Van den Bergh** reaction. It takes place in 2 different solvents:
 - **1-** In water: Direct measurement of conjugated bilirubin (direct bilirubin).
 - 2- In Ethanol or methanol: Total measurement of bilirubin.
 - \Rightarrow Indirectly, unconjugated bilirubin = total bilirubin direct bilirubin.

		Unconjugated hyperbillirubinemia			Conjugated hyperbillirubinemi
Sample	Indices	Normal	Hemolytic Jaundice	Hepatic Jaundice	Obstructive Jaundice
Serum	Total Bil	< 1mg/dl	> 1mg/dl	> 1mg/dl	> 1mg/dl
	Direct Bil	0~0.8mg/dl		1	11
	Indirect Bil	< 1mg/dl	↑ ↑		
Urine	Color	normal	deeper	deep	deep
	Bilirubin	-		+ +	++
	Urobilinogen	A little	1	uncertain	Ļ
	Urobilin	A little	î	uncertain	↓ Clayish color
Stool	Color	normal	deeper	lighter or normal	Argilous (complete obstruction)

→ In Hemolytic Jaundice:

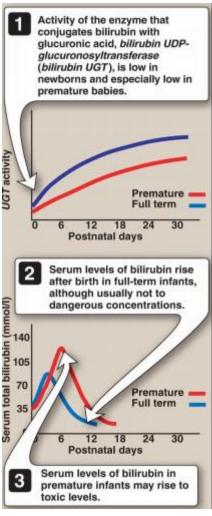
High levels of unconjugated bilirubin are present, leading to dark stool and urine.

→ In Hepatic Jaundice:

Liver damage **decreases** the **conjugation** efficiency, thus there is a defect in the secretion of conjugated bilirubin into bile causing stool to be **lighter** in color. However, lab results **vary** a lot depending on the **cause** of liver damage.

→ In Obstructive Jaundice:

There is a **high** buildup of **conjugated** bilirubin that will not be delivered into the intestine. Therefore, it leaves into the **blood** causing **conjugated hyperbilirubinemia**.


The conjugated bilirubin is excreted through urine in high levels causing dark urine.

Unconjugated bilirubin amounts are **low** since they aren't being transported into the intestine. Stool is thus **argilous** (clayish) in color in the case of complete obstruction.

Jaundice in Newborns

- Newborn jaundice is very common and can occur when babies have a **high** level of **bilirubin**, the main cause is that the **conjugating enzyme** is not efficient yet.
- Rarely, an **unusually high** blood level of bilirubin can place a newborn at **risk** of **brain damage** where bilirubin may cross the BBB into the CNS, particularly in the presence of certain risk factors.

Good Luck