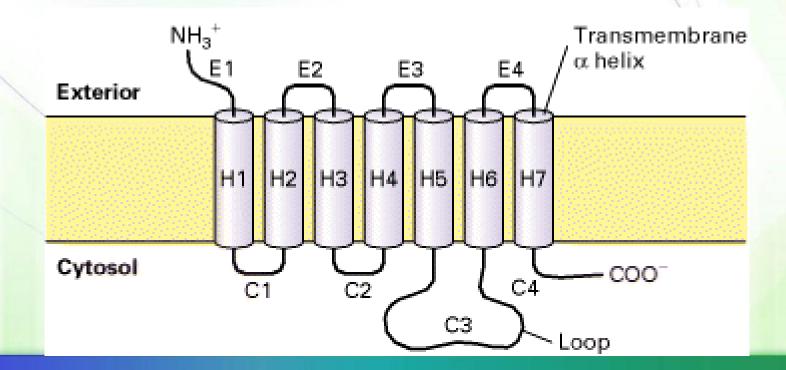


Mechanism of hormone actions II Cell Surface Receptors


Prof. Mamoun Ahram Second year, 2019

Gprotein-coupled receptors

G protein-coupled receptors

- All G protein-coupled receptors (GPCRs) contain seven membrane-spanning regions.
- They all mediate a similar signaling pathway.

Homology

- Although all GPCRs are structurally similar, their amino acid sequences generally are quite dissimilar.
 - β 1- and β 2-adrenergic receptors are 50 percent identical.
 - a and β -adrenergic receptors exhibit even less homology.
- The specific amino acid sequence of each receptor determines:
 - Ligand binding
 - G proteins interaction

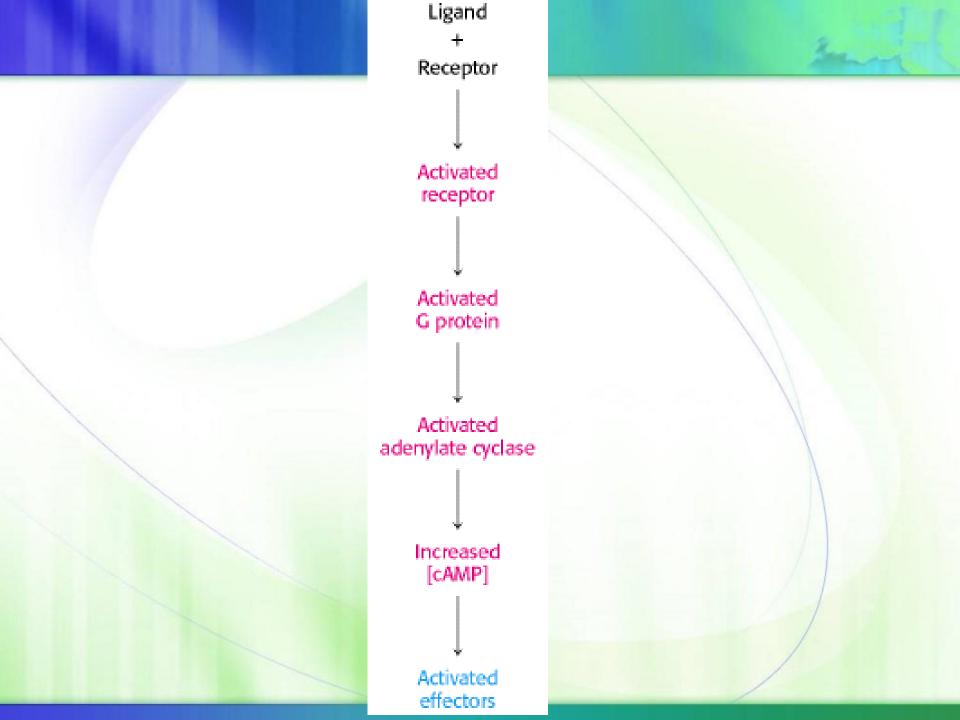
G proteins

α GDP β

- G proteins are intermediary in signal transduction from the seven transmembrane (7TM) receptors.
- S proteins are made of three subunits α , β , and γ .

G_{α} class	Initiating signal	Downstream signal
G _{as}	β-Adrenergic: amines, glucagon, parathyroid hormone, many others	Stimulates adenylate cyclase
$\mathbf{G}_{\alpha \mathbf{i}}$	Acetylcholine, α -adrenergic: amines, many neurotransmitters	Inhibits adenylate cyclase
$G_{\alpha q}$	Acetylcholine, α -adrenergic: amines, many neurotransmitters	Increases IP ₃ and intracellular calcium
$\mathbf{G}_{\mathbf{\alpha}\mathbf{t}}$	Photons	Stimulates cGMP phosphodiesterase
$G_{\alpha 13}$	Thrombin, other agonists	Stimulates Na ⁺ and H ⁺ exchange

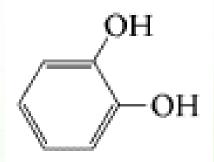
Second messengers


- Information is transduced via changes in the concentration of second messengers:
 - cyclic AMP and cyclic GMP, calcium ion, inositol 1,4,5trisphosphate (IP3), diacylglycerol (DAG)
 - Why are second messengers good?
 - Second messengers are often free to diffuse to other compartments of the cell.
 - The signal may be amplified significantly in the generation of second messengers
 - The use of common second messengers in multiple signaling pathways often results in cross-talk between different signaling pathways.

Classification according to second messengers

Group II. HORMONES THAT BIND TO CELL SURFACE RECEPTORS

Parathyroid hormone (PTH)					
Opioids					
Acetylcholine					
Glucagon					
α2-Adrenegic catecholamines					
Corticotropin-releasing hormone (CRH)					
Calcitonin					
Somatostatin					
β-Adrenergic catecholamines					
atidylinositides (or both)					
Acetylcholine (muscarinic)					
Substance P					
Angiotensin II					
Gonadotropin-releasing hormone(GnRH)					
C. The intracell messenger is a protein kinase cascade (started by tyr phosphorylation)					
Oxytocin					
2					
Nerve growth factor (NGF)					
Epidermal growth factor(EGF)					
Platelet-derived growth factor					
Fibroblast growth factor (FGF)					


An example

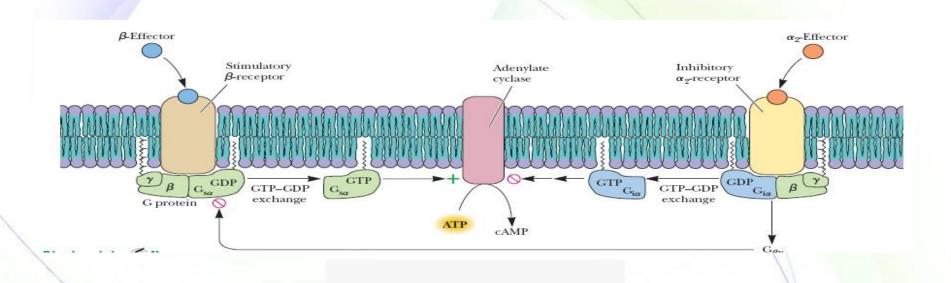
Adrenergic receptors

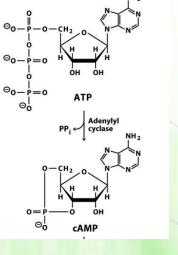
This protein binds epinephrine но.
 (also called adrenaline), a hormone responsible for the "fight or flight" но response.

Actions of epinepherine

(β-adrenergic receptor)

Beta Receptors				
β1	β2			
(postsynaptic)	(postsynaptic)			
Gs protein coupled Activates Adenyl Cyclase ATP → cAMP	<u>v</u>			
 The heart a. ↑heart rate (+ chronotropic) b. ↑impulse conduction (+dromotropic) c. ↑contraction (+ inotropic) d. ↑ejection fraction ?trenin release by Juxtaglomerular cells 3. ↑hunger 	 Smooth muscle relaxation of Bronchus Bronchioles Detrusor muscle Uterine muscle Contraction of urethral spinchter ↑renin release by Juxtaglomerular cells Glucose metabolism Inhibits insulin release Stimulate Gluconeogenesis Glucolysis 			


Actions of epinepherine


(a1-adrenergic receptor)

Ŧ	Ŧ					
	Alpha Receptors Vasoconstriction of Coronary arteries Veins Imotility of GIT smooth muscle cells 					
	al	a2				
	(postsynaptic)	(presynaptic)				
	Gq protein coupled Activates Phospholipase C PIP2 → IP3 + DAG	Gi protein coupled Inhitbits Adenyl Cyclase ATP →X→cAMP				
	 Vasoconstriction of blood vessels of Skin GIT Kidney Brain Contraction of smooth muscles of Ureter Vas deferens Urethral spinchter Uterus Cilliary body (mydiarisis) Glucose metabolism Glucolysis 	 Glucose metabolism Inhibits insulin release Stimulates glucagon release Contraction of anal spinchter Inhibits release of Norepinephrine 				

The signal transduction of epinepherine

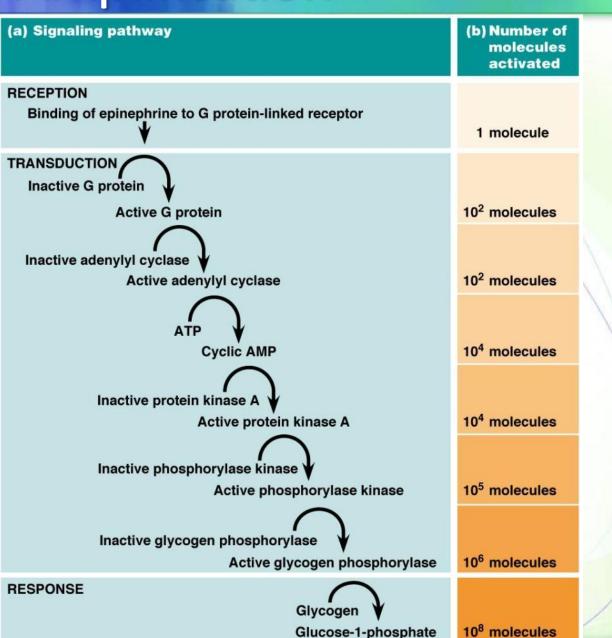
Signal Transduction

© Sinauer Associates, Inc.

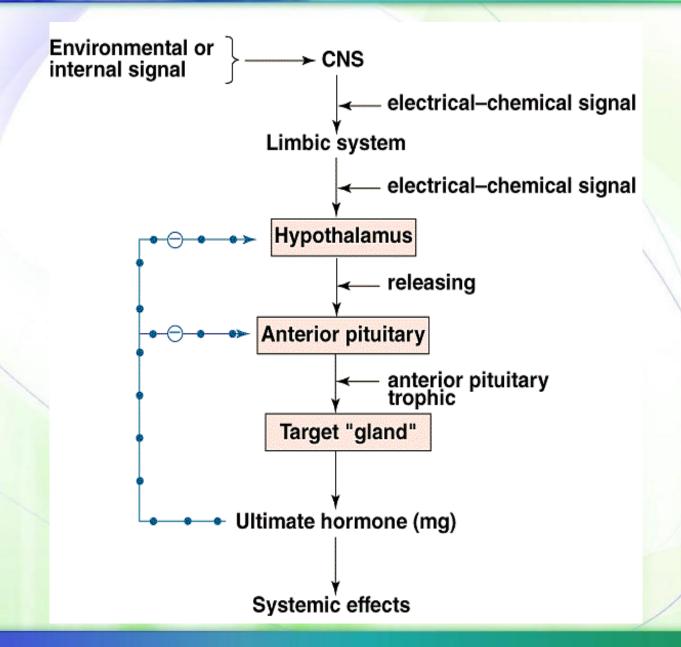
Cellular effects of cAMP

- degradation of storage fuels
- ↑ secretion of acid by gastric mucosa
- Dispersion of melanin pigment granules
- Jaggregation of blood platelets
- Opening of chloride channels

<u>Proc Natl Acad Sci U S A</u>. 2017 Jul 25; 114(30): E6260–E6269. Published online 2017 Jul 10. doi: <u>10.1073/pnas.1703728114</u> PNAS Plus Physiology PMCID: PMC5544304 PMID: <u>28696284</u>

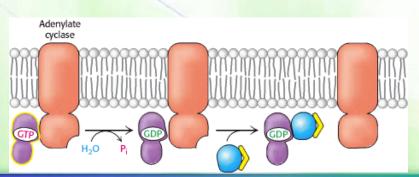

Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells

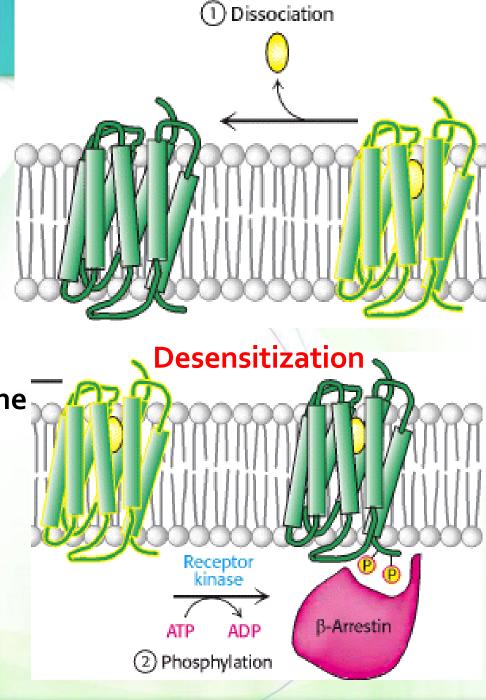
Then...


Hormone Receptor **Usually:** Ser or Thr Ga Adenylate cyclase cAMP RR P ATP Inactive ATP cAMP + enzyme GTP GDP + P **PKA** Active ADP phosphorylated Glycogen enzyme **Signal Amplification** Synthase!! Cellular response © Sinauer Associates, Inc.

Signal Amplification

Amplification at the hormonal level as well

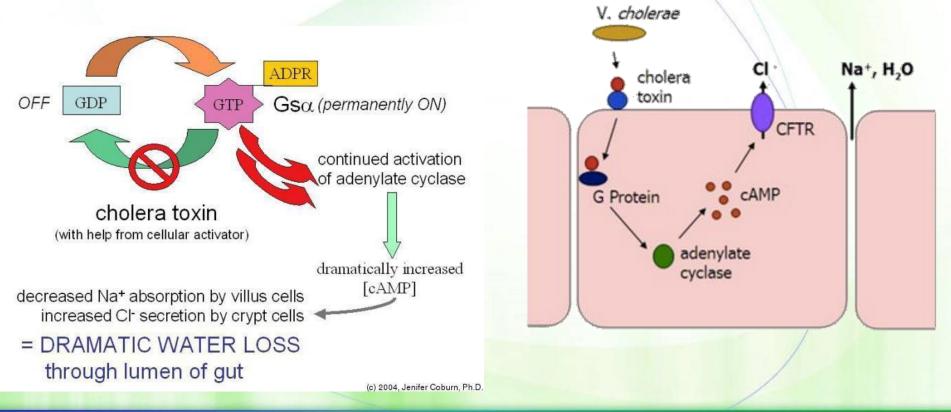

Termination


Dissociation of the hormone

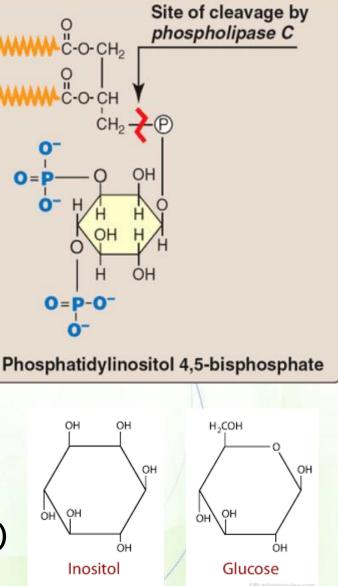
GTPase activity of Gα subunit

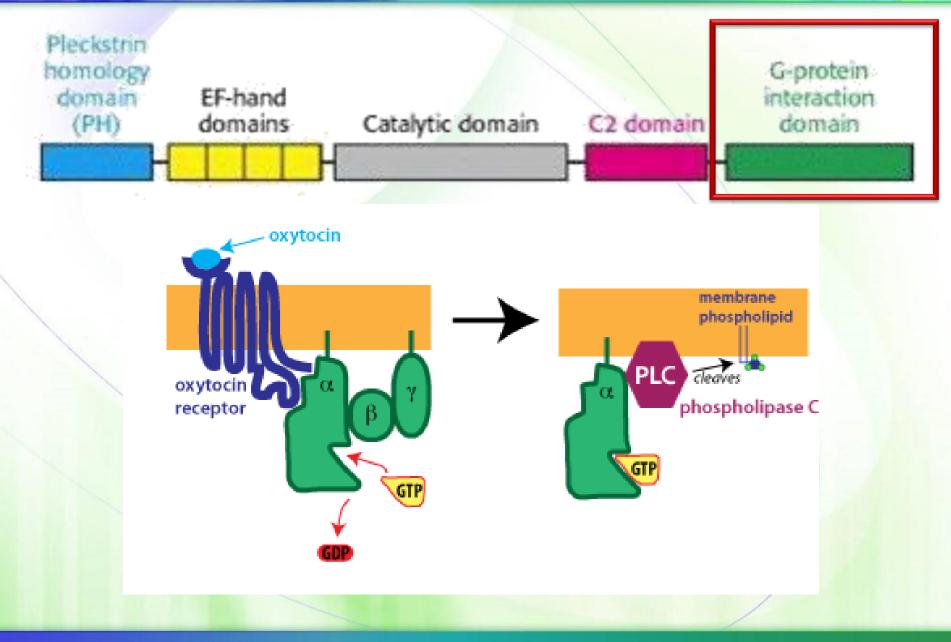
Hydrolysis of cAMP (phosphodiesterase)

Phosphorylation of the hormone bound-receptor followed by binding to β-Arrestin



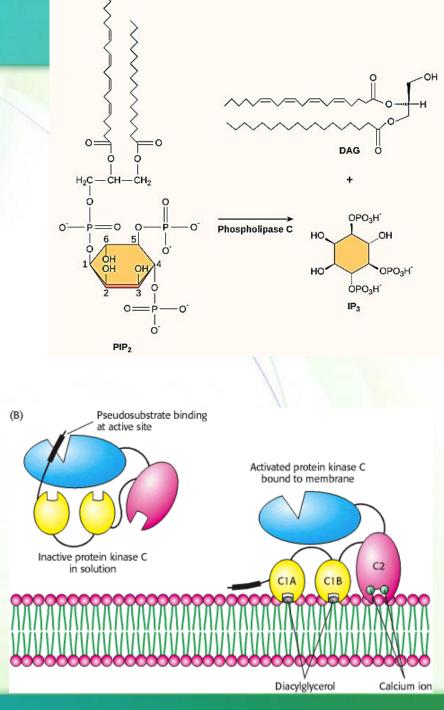
Cholera

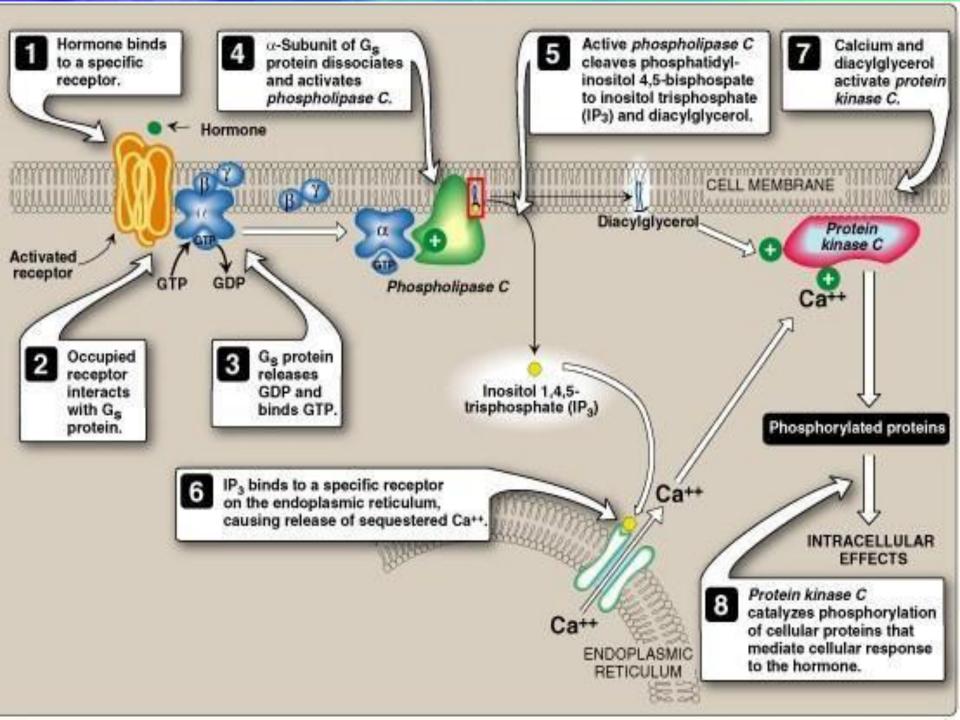

 Cholera toxin → G protein is locked in active form → overactive adenylate cyclase → Excessive cAMP →active transport of Na⁺ → large flow of Na⁺ and water from the mucosa → diarrhea


The phosphoinositide pathway

- Used by many hormones (e.g. ADH)
- Binding of a hormone to 7TM receptor
- Activation of G Protein
- Activation of Phospholipase C (many isoforms) PIP2
 - Two messengers are produced
 - Inositol 1,4,5-trisphosphate, hydrophilic, (Soluble)
 - IP3 is the actual second messenger
 - Diacyclglycerol, amphipathic (membrane)

G protein interaction domain




The biochemical effects of IP3

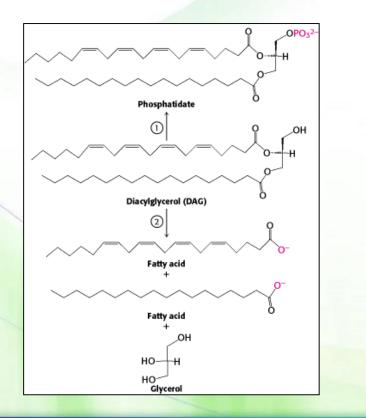
- IP3 binds to a membrane protein called the IP3 receptor, which forms an ion channel.
- The channel opens releasing Ca2+ from the endoplasmic reticulum and, in smooth muscle cells, the sarcoplasmic reticulum.
 - Increased Ca2 triggers processes such as smooth muscle contraction, glycogen breakdown, and vesicle release (exocytosis).

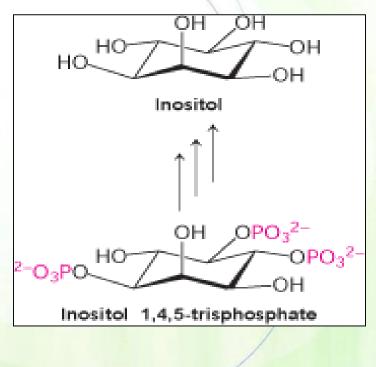
Diacylglycerol

- DAG is formed by the hydrolysis of PIP2 by PLC.
- DAG activates many targets
 - Protein kinase C
- How?
 - PKC is inactivated by a self pseudosubstrate.
 - Increased Ca2+
 - allows enzyme binding to the membrane facilitating DAG binding to PKC, which pulls out the pseudosubstrate out of the active site.

Ca-activated calmodulin

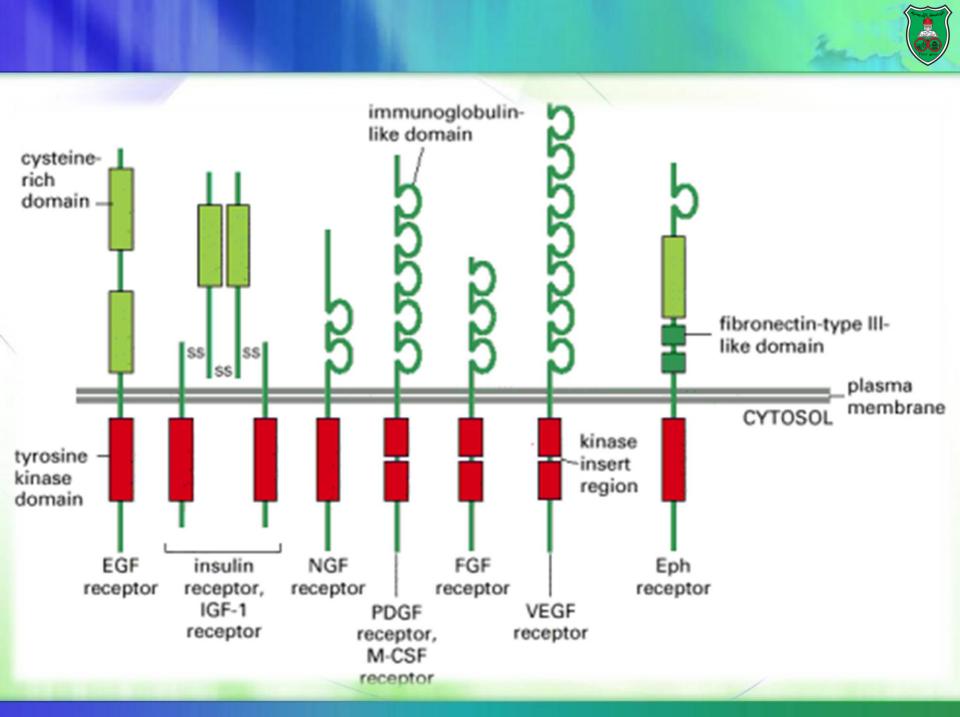
- Ca2+ also interacts with and activates calmodulin, which modulates the functions of many enzymes:
 - adenylate cyclase
 - phosphorylase kinase
 - pyruvate carboxylase
 - pyruvate dehydeogenase
 - glycerol-3-phosphate dehydrogenase
 - glycogen synthase
 - guanylate cyclase
 - myosin kinase
 - phospholipase A2
 - calmodulin-dependent kinase


Ca-activated calmodulin


- These enzymes catalyze many important cellular responses
 - glycogenolysis in liver cells
 - histamine secretion by mast cells
 - insulin secretion by pancreatic islet cells
 - aggregation of blood platelets
 - epinephrine secretion by adrenal chromaffin cells
 - smooth muscle contraction
 - visual transduction
 - gene transcription

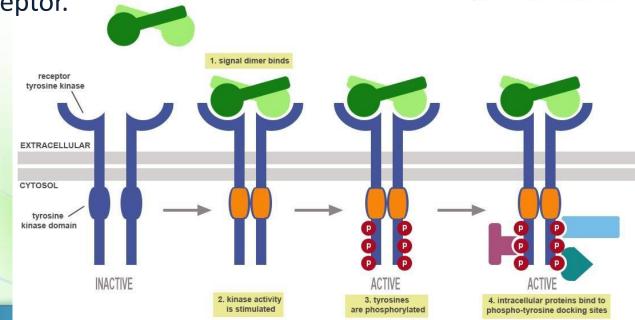
Termination

- IP3 is a short-lived messenger (less than a few seconds) because it is rapidly degraded to inositol.
- DAG is phosphorylated to phosphatidate or hydrolyzed to glycerol and fatty acids.



Signaling through Enzyme-Linked Cel-Surface Receptors

Enzyme-Linked Cell-Surface Receptors



- Enzyme-linked receptors are a major type of cellsurface receptors that promote cell growth, proliferation, differentiation, or survival.
- Their ligands are often called growth factors, which act at very low concentrations (about 10⁻⁹-10⁻¹¹ M).
 - Receptors either mediate slower response (hours) that lead to changes in gene expression or faster responses (seconds) with effectson the cytoskeleton (cell movement and shape).

Receptor tyrosine kinases

- An example of enzyme-linked receptors is receptor tyrosine kinases.
- These receptors also contain an intracellular kinase domain that phosphorylates specific tyrosines on a small set of intracellular signaling proteins.
- The binding of a signal protein to the ligand-binding domain induces dimerization of the receptor and activates the intracellular tyrosine kinase domain that phosphorylates itself (authophosphorylation) and other intracellular signaling proteins that subsequently bind to the phosphorylated receptor.

Anexample: insulinand/GF-1 receptor

The mechanism of receptor activation

The receptors are tetramers where, when bound to the ligand, the two kinase domains come close together, phosphorylate each other (autophosphorylation).

SS

ineu

receptor,

IGE-1

88

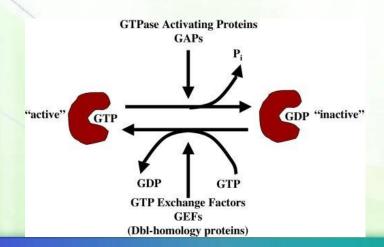
- Autophosphorylation activates signaling by:
 - First, phosphorylation of tyrosines within the kinase domain increases the kinase activity
 - Second, phosphorylation of tyrosines outside the kinase domain creates high-affinity binding sites for the binding of other signaling proteins such as
 - Insulin receptor substrate-1 (IRS-1)
 - Grb2

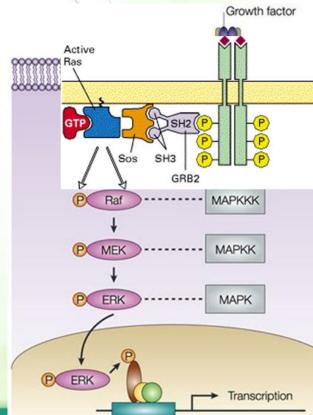
Insulin signaling pathways

- Insulin can initiate multiple signaling pathways resulting in:
 - Immediate effects (minutes):
 - an increase in the rate of glucose uptake from the blood into muscle cells and adipocytes.
 - modulation of the activity of various enzymes involved in glucose metabolism.

These effects do not require new protein synthesis.

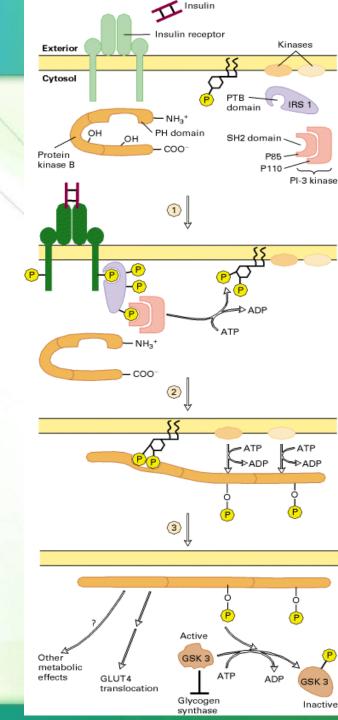
- Longer-lasting effects (hours):
 - increased expression of enzymes that synthesize glycogen (liver) and triacylglycerols (adipocyte).


Insulin-activated signaling pathways



- Binding of insulin can initiate three distinct signaling pathways:
 - Ras-dependent pathway and
 - Ras-independent pathways
- Both depend on insulin receptor substrate 1 (IRS1).

Ras-Dependent Pathway


- IRS1 binds to the activated insulin receptor and is phosphorylated by the receptor's kinase
- Phosphorylated IRS1, not the activated insulin receptor, binds to Grb2, which binds to Sos protein.
- SOS is a GTP-exchange factor promoting exchange of GDP to GTP in Ras.
- GTP-Ras activates Raf (a kinase), which activates MAP kinase, which activates ERK.
- ERK can then be re-located into nucleus activating transcription factors.


Ras-independent Pathways

- Phosphorylated IRS1 also binds PI-3 kinase activating it resulting in production of phosphoinositides. This lead to recruitment of protein kinase B (PKB) to the membrane.
- PKB is phosphorylated by membraneassociated kinases.
- Phosphorylated (active) PKB is released into the cytosol mediating many effects of insulin such as stimulation of glucose uptake and glycogen synthesis.

Phospholipase C

 Similar to G-protein mediated signaling, insulin receptor can lead to the activation of phospholipase C

Termination of signal

Signals are terminated by phosphatases.

The Protein TCR Sem5/ Grb PTK Phosphorylation OK, CLASS! Cascade. CD45 Pay attention! (inactive) c. 1994 It's quite simple! Sos Syp - SypY Kinases have kinases upon their backs to bite 'em! ⊕ Sos/Grb PDGF-R# Ras Kinase Kinases have kinases .. and so -- ad infinitum ?! PTP. PLST HCP-1 PTP-18 SHPTP-1 41 100 MSG - 5 PTP-O Er - ACTUALLY, it's not QUITE that simple, because Some kinases have phosphatases. (so they're regulated). And PTPs have kinases! (It's getting COMPLICATED!) MAP GENE ST MKP-1 GENE ACTIVATION Drawn for Ties TAB This is the fourth one we've brought in like this since the TIBS Special Issue on Protein Phosphorylation , George! "And phosphotyrosines will bind Do you think there might be a to SH-2 domains! Whilst proline strings bind SH-3! link? ... and round we go again . Some activated proteins shift from cytosol to membrane, AMBULANCE Whilst some enter the nucleus --(1've got a pain in my brain!)'