

Molecular Biology (2)

Restriction endonucleases, RFLP, and gene cloning

Mamoun Ahram, PhD Second semester, 2018-2019

Resources

This lectureCooper, pp 120-124

Endonucleases

- Enzymes that degrade DNA within the molecule rather than from either end (exonucleases)
- Restriction endonucleases: Enzymes that recognize and cut (break) the phosphodiester bond between nucleotides at *specific* sequences (4- to 8-bp restriction sites) generating restriction fragments.
 - Type II restriction endonucleases: Always cleave always at the same place generating the same set of fragments
 - EcoRI (isolated from E. coli) cuts at 5'-GAATTC-3'

Biological purpose of restriction endonucleases

They are present in bacteria to protect them from bacteriophages that infect bacteria by transferring their DNA into them restricting their growth.

What is transduction?

Types of cleavages

Restriction enzymes cut DNA in two different ways:

- Blunt: enzymes cut at the same position on both strands giving a blunt ended fragments.
- Staggered (off-center): enzymes cut the two DNA strands at different positions generating sticky or cohesive ends.
 - The DNA fragments have short single-stranded overhangs at each end.

Palindromic sequences

The sequences recognized by restriction endonucleases—their sites of action—read the same from left to right as they do from right to left (on the complementary strand).

ECORI	5'	GAATTC	3'	1
	3'	CTTAAG	5'	
HindIII	5'	AAGCTT	3 '	
	3 '	TTCGAA	5'	
SmaI	5'	CCCGGG	3'	
	3'	GGGCCC	5'	

DNA ligase

- It covalently joins DNA ends (example, restriction fragments).
- It catalyzes the formation of phosphodiester bonds between the 3'-hydroxyl group of one strand and the 5'-phosphate end of another strand.

Advantage of restriction endonucleases

- Restriction fragment length polymorphism (RFLP)
- Cloning

DNA polymorphisms

Individual variations in DNA sequence (*genetic variants*) may create or remove restriction-enzyme recognition sites generating different restriction fragments.

Remember: our cells are diploid (alleles can be homozygous or heterozygous)

What is an allele?

Restriction fragment length polymorphism

- The presence of different DNA forms in individuals generates a restriction fragment length polymorphism, or RFLP.
- These can be detected by
 - Gel electrophoresis
 - Southern blotting

Example

Variant 1 *Eco*RI does not cut

Variant 2 EcoRI does cut

GCC<mark>GCATTC</mark>TA CGG<mark>CGTAAG</mark>AT

GCC<mark>GAATTC</mark>TA CGG<mark>CTTAA</mark>GAT

RFLP in the clinic

RFLP can be used as diagnostic tools.

- For example, if a mutation that results in the development of a disease also causes the generation of distinctive RFLP fragments, then we can tell:
 - if the person is diseased as a result of this mutation
 - from which parent this allele is inherited

Disease detection by RFLP

Think!! What would you see in a gel? Why?

Supplementary information

(hard)

Example 2: Paternity testing

Real case

More real cases

Cloning

- Cloning means that you make several copies of one thing.
- A clone is a genetically identical population, whether of organisms, cells, viruses, or DNA molecules.
- Every member of the population is derived from a single cell, virus, or DNA molecule.

How do we clone a DNA molecule?

- a DNA fragment of interest is inserted into a DNA carrier (called a vector) that can be replicated.
- The resulting DNA molecule is what is known as a recombinant DNA molecule.

Fig. 8-4 : Cloning and production of identical DNA Molecules

Using plasmids as vectors

- Bacterial plasmids are considered excellent vectors.
- These are bacterial circular DNA that is not part of the main circular DNA chromosome of the bacterium.
- A plasmid exists as a closed circle and replicates independently of the main bacterial genome.

Features of plasmids

Most plasmid vectors contain at least three essential parts required for DNA cloning:

- Can replicate
- Can be selected for/against by an internal drugresistance gene (selectable marker)
- Can insert a foreign DNA fragment

Making of recombinant DNA

Both DNA fragments (the DNA to be cloned and a vector) are cut by the same restriction endonuclease that makes DNA fragments with same sticky-ends that hybdridize to each other, when mixed.

Zoom into the sticky ends

