Introduction to Microbiology

Anas Abu-Humaidan M.D. Ph.D.

Viral classification

- Knowledge of the structural (size and morphology) and genetic (type and structure of nucleic acid) features of a virus provides insight into how the virus replicates, spreads, and causes disease.
- The most consistent and current means of classification is by physical and biochemical characteristics, such as size, morphology (e.g., presence or absence of a membrane envelope), type of genome, and means of replication

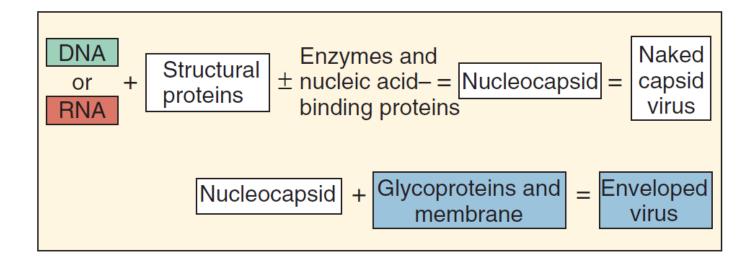
Box 36-3 Means of Classification and Naming of Viruses

Structure: size, morphology, and nucleic acid (e.g., picornavirus [small RNA], togavirus)

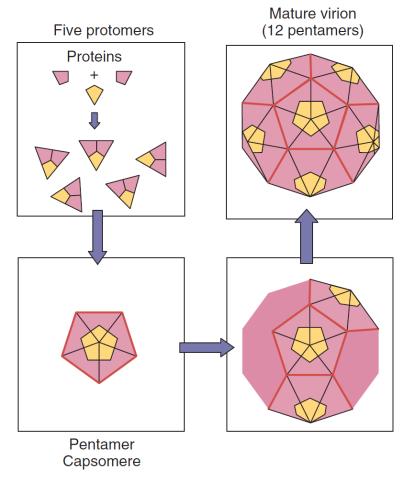
Biochemical characteristics: structure and mode of replication*

Disease: encephalitis and hepatitis viruses, for example

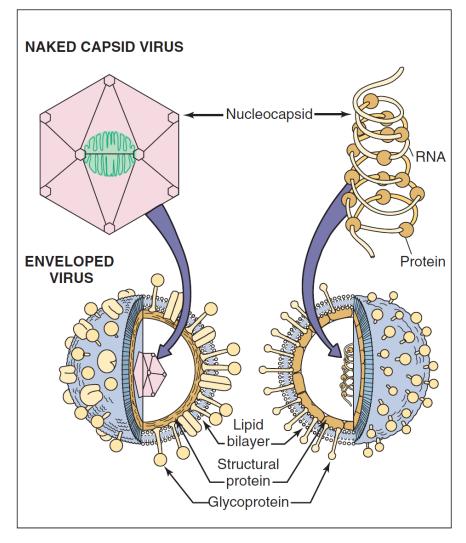
Means of transmission: arbovirus spread by insects, for example


Host cell (host range): animal (human, mouse, bird), plant, bacteria

Tissue or organ (tropism): adenovirus and enterovirus, for example


^{*}This is the current means of taxonomic classification of viruses.

Viral structure


• The **virion** (the virus particle) consists of a nucleic acid **genome** packaged into a protein coat **(capsid)** or a membrane **(envelope)** The clinically important viruses range from 18 nm (parvoviruses) to 300 nm (poxviruses)

Viral structure

FIGURE 36-5 Capsid assembly of the icosahedral capsid of a picornavirus. Individual proteins associate into subunits, which associate into protomers, capsomeres, and an empty procapsid. Inclusion of the (+) RNA genome triggers its conversion to the final capsid form.

FIGURE 36-4 The structures of a naked icosahedral capsid virus (top left) and enveloped viruses (bottom) with an icosahedral (left) nucleocapsid or a helical (right) ribonucleocapsid. Helical nucleocapsids are always enveloped for human viruses.

Viral structure

Box 36-4 Virion Structure: Naked Capsid

Component

Protein

Properties*

Is environmentally stable to the following:

Temperature

Acid

Proteases

Detergents

Drying

Is released from cell by lysis

Consequences*

Can be spread easily (on fomites, from hand to hand, by dust, by small droplets)

Can dry out and retain infectivity

Can survive the adverse conditions of the gut

Can be resistant to detergents and poor sewage treatment

Antibody may be sufficient for immunoprotection

Box 36-5 Virion Structure: Envelope

Components

Membrane

Lipids

Proteins

Glycoproteins

Properties*

Is environmentally labile—disrupted by the following:

Acid

Detergents

Drying

Heat

Modifies cell membrane during replication

Is released by budding and cell lysis

Consequences*

Must stay wet

Cannot survive the gastrointestinal tract

Spreads in large droplets, secretions, organ transplants, and blood transfusions

Does not need to kill the cell to spread

May need antibody and cell-mediated immune response for protection and control

Elicits hypersensitivity and inflammation to cause immunopathogenesis

^{*}Exceptions exist.

^{*}Exceptions exist.

Pathogenesis of Viral Diseases

- The outcome of a viral infection is determined by the nature of the **virus-host interaction** and the **host's response** to the infection.
- Viruses encode activities (virulence factors) that promote the efficiency of viral replication, viral transmission, access and binding of the virus to target tissue, or escape of the virus from host defences and immune resolution.
- A particular disease may be caused by several viruses that have a common tissue preference. (hepatitis—liver, encephalitis—CNS)
- A particular virus may cause **several different diseases** herpes simplex virus type 1 (HSV-1) can cause gingivostomatitis, pharyngitis, herpes labialis (cold sores), genital herpes.
- A particular virus may cause no symptoms at all.

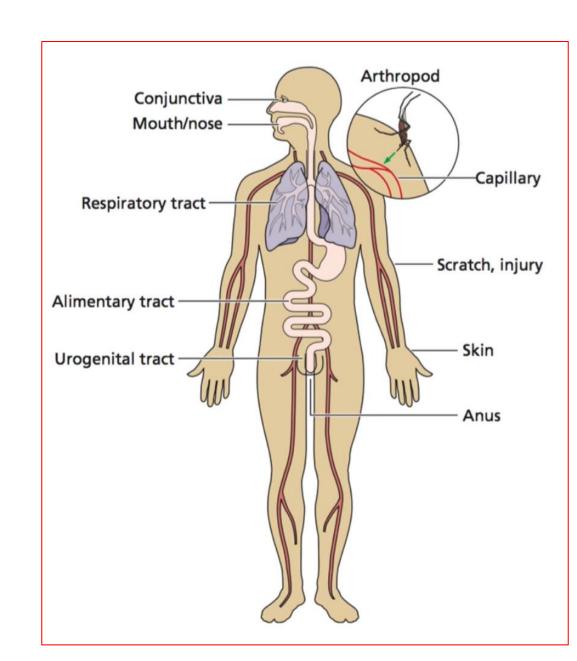
The outcome of a viral infection is determined by the nature of the virus-host interaction and the host's response to the infection.

Nature of the Disease	
Target tissue	
Portal of entry of virus	
Access of virus to target tissue	
Tissue tropism of virus	
Permissiveness of cells for viral replication	
Pathogenic activity (strain)	

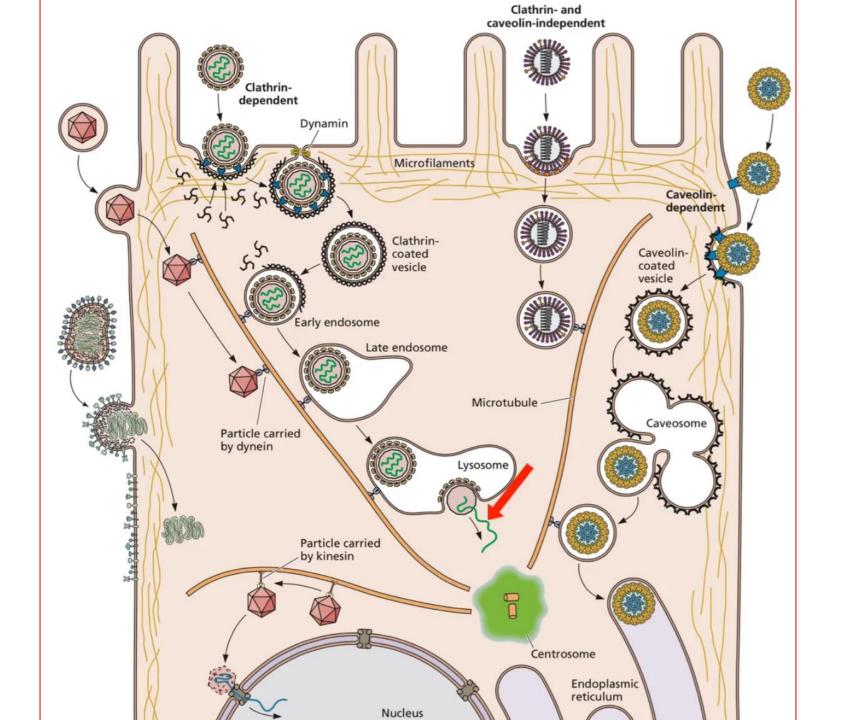
Severity of Disease	
Cytopathic ability of virus	
Immune status (naïve or immunized)	
Competence of the immune system	
Prior immunity to the virus	
Immunopathology	
Virus inoculum size	
Length of time before resolution of infection	
General health of the person	
Nutrition	
Other diseases influencing immune status	
Genetic makeup of the person	
Age	

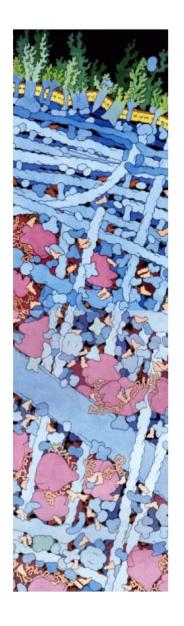
Steps in Viral Pathogenesis

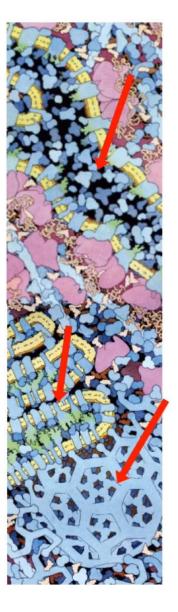
- A. Entry and Primary replication
- **B.** Viral Spread and Cell Tropism
- C. Cell Injury and Clinical Illness
- D. Recovery from Infection
- E. Virus Shedding



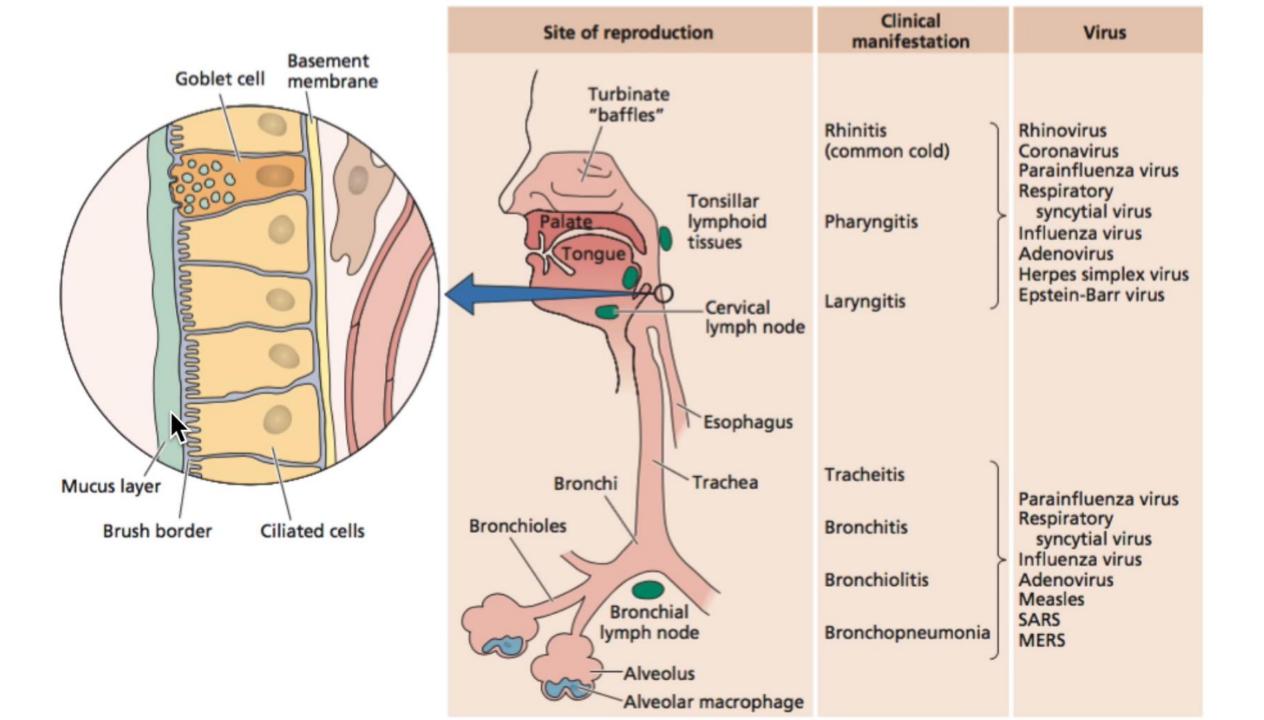
Box 37-2 Progression of Viral Disease


- **1. Acquisition** (entry into the body)
- **2.** Initiation of infection at a primary site
- **3.** Activation of innate protections
- **4.** An **incubation period**, when the virus is amplified and may spread to a secondary site
- **5.** Replication in the **target tissue**, which causes the characteristic disease signs
- **6. Host responses** that limit and contribute (immunopathogenesis) to the disease
- **7.** Virus production in a tissue that releases the virus to other people for **contagion**
- 8. Resolution or persistent infection/chronic disease


A. Entry and Primary replication


- The virus gains **entry into the body** through breaks in the **skin** (cuts, bites, injections) or across the **mucoepithelial membranes** that line the orifices of the body (eyes, respiratory tract, mouth, genitalia, and gastrointestinal tract). *Inhalation* is probably the most common route of viral infection.
- Viruses usually replicate at the primary site of entry.
 Some, such as influenza viruses (respiratory infections) and noroviruses (gastrointestinal infections), produce disease at the portal of entry and likely have no necessity for further systemic spread.
- Some viruses are introduced directly into the bloodstream by needles (hepatitis B, human immunodefi ciency virus [HIV]), by blood transfusions, or by insect vectors (arboviruses).

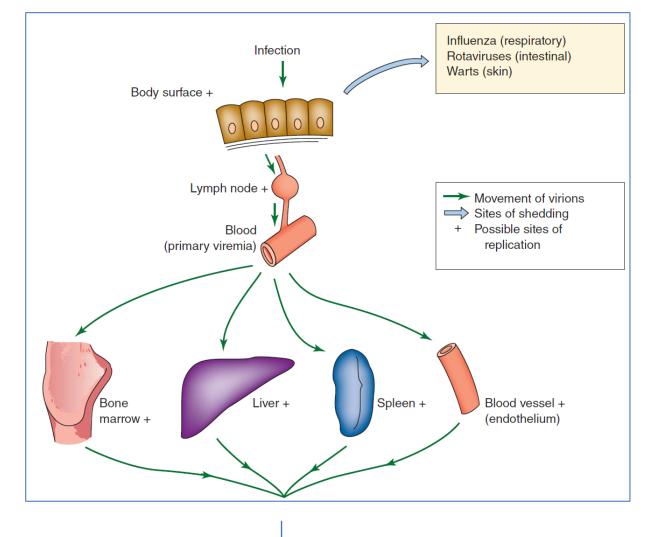
Route of Entry	Virus Group	Produce Local Symptoms at Portal of Entry	Produce Generalized Infection Plus Specific Organ Disease
Respiratory tract	Parvovirus		B19
	Adenovirus	Most types	
	Herpesvirus	Epstein-Barr virus, herpes simplex virus	Varicella virus
	Poxvirus		Smallpox virus
	Picornavirus	Rhinoviruses	Some enteroviruses
	Togavirus		Rubella virus
	Coronavirus	Most types	
	Orthomyxovirus	Influenza virus	
	Paramyxovirus	Parainfluenza viruses, respiratory syncytial virus	Mumps virus, measles virus
Mouth, intestinal tract	Adenovirus	Some types	
	Calicivirus	Noroviruses	
	Herpesvirus	Epstein-Barr virus, herpes simplex virus	Cytomegalovirus
	Picornavirus		Some enteroviruses, including poliovirus, and hepatitis A virus
	Reovirus	Rotaviruses	
Skin			
Mild trauma	Papillomavirus	Most types	
	Herpesvirus	Herpes simplex virus	
	Poxvirus	Molluscum contagiosum virus, orf virus	
Injection	Hepadnavirus		Hepatitis B
	Herpesvirus		Epstein-Barr virus, cytomegalovirus
	Retrovirus		Human immunodeficiency virus
Bites	Togavirus		Many species, including eastern equine encephalitis virus
	Flavivirus		Many species, including yellow fever virus
	Rhabdovirus		Rabies virus

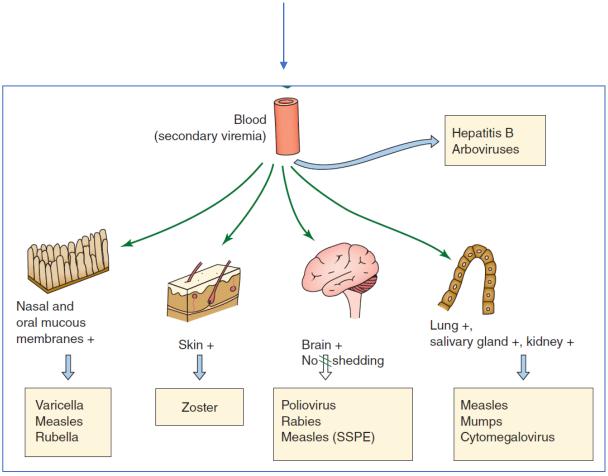


The cytoplasm is crowded!

Movement of large protein complexes will not occur by diffusion!

B. Viral Spread and Cell Tropism


Many viruses produce disease at sites distant from their point of entry, the most common route is via the bloodstream or lymphatics. The presence of virus in the blood is called **viremia**. Virions may be free in the plasma (eg, enteroviruses, togaviruses) or associated with particular cell types (eg, measles virus)


Viruses tend to exhibit organ and cell specificities. Thus, **tropism** determines the pattern of systemic illness produced during a viral infection. (e.g. hepatitis B virus has a tropism for liver hepatocytes).

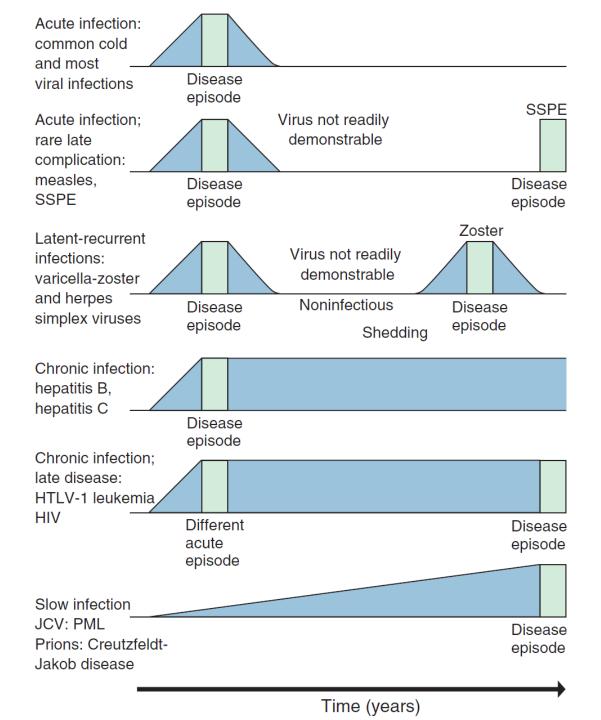
Tissue tropism depends mainly on cell receptors for attachment and internalization of the virus.

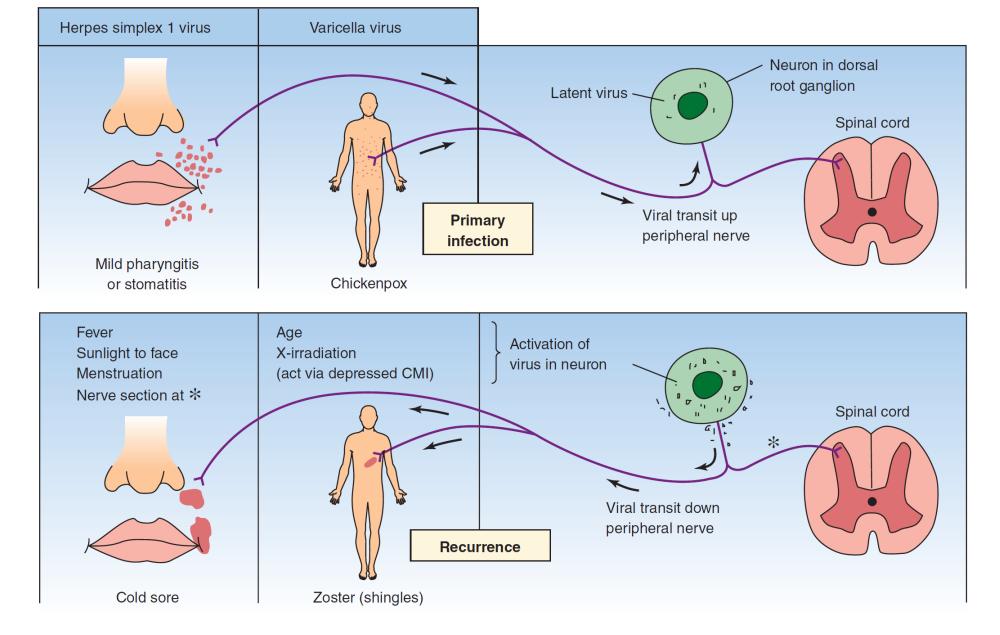
Also **cellular enzymes** can be needed to modify viral proteins and initiate infection, and thus affect tropism.

Enhancer regions that show some cell-type specificity may regulate transcription of viral genes. For example, the JC polyomavirus enhancer is much more active in glial cells than in other cell types.

C. Cell Injury and Clinical Illness

- **Destruction of virus-infected cells** in the target tissues and physiologic alterations produced in the host by the tissue injury are partly responsible for the development of disease.
- General symptoms associated with many viral infections, such as malaise and anorexia, may result from host response functions such as cytokine production.
- Inapparent infections by viruses are very common.

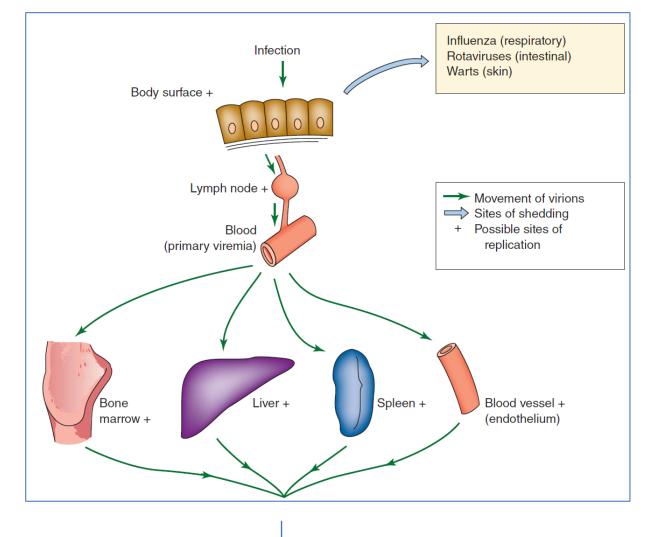


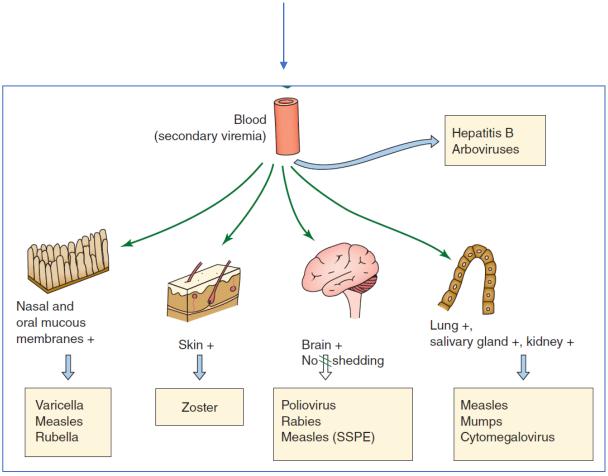

Table 37-2 Mechanisms of Viral Cytopathogenesis

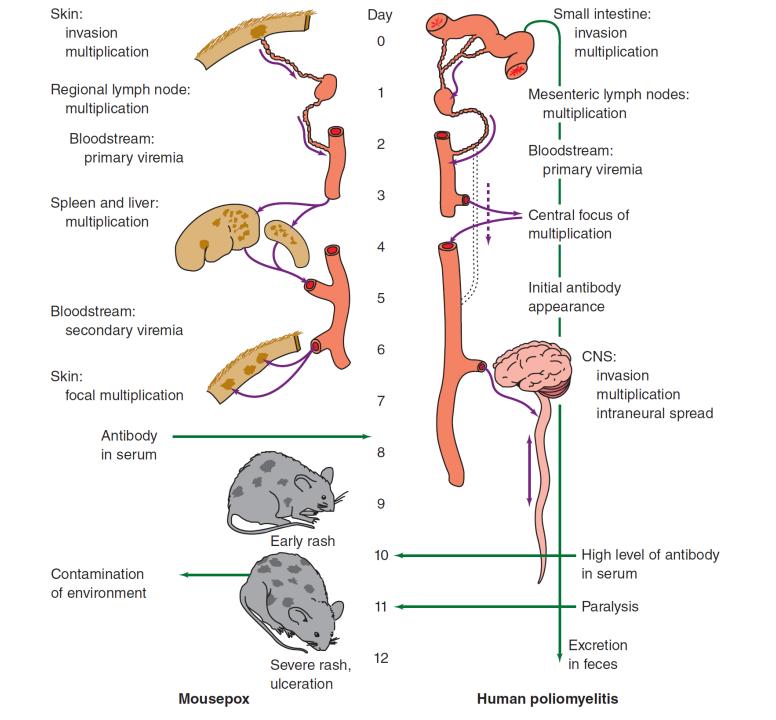
Mechanism	Examples
Inhibition of cellular protein synthesis	Poliovirus, herpes simplex virus (HSV), togaviruses, poxviruses
Inhibition and degradation of cellular DNA	Herpesviruses
Alteration of cell membrane structure	Enveloped viruses
Viral glycoprotein insertion	All enveloped viruses
Syncytia formation	HSV, varicella-zoster virus, paramyxoviruses, human immunodeficiency virus
Disruption of cytoskeleton	Nonenveloped viruses (accumulation), HSV
Permeability	Togaviruses, herpesviruses
Toxicity of virion components	Adenovirus fibers, reovirus NSP4 protein

D. Recovery from Infection

- The host either succumbs or recovers from viral infection.
- Recovery mechanisms include both innate and adaptive immune responses. Interferon (IFN) and other cytokines, humoral and cell-mediated immunity, and possibly other host defense factors are involved.
- In acute infections, recovery is associated with viral clearance. However, there are times when the host remains persistently infected with the virus.




FIGURE 30-4 Latent infections by herpesviruses. Examples are shown for both herpes simplex and varicella-zoster viruses. Primary infections occur in childhood or adolescence, followed by establishment of latent virus in the cerebral or spinal ganglia. Later activation causes recurrent herpes simplex or zoster. Recurrences are rare for zoster. CMI, cell-mediated immunity. (Reproduced with permission from Mims CA, White DO: *Viral Pathogenesis and Immunology*. Blackwell, 1984.)


E. Virus Shedding

- Shedding occurs at different stages of disease depending on the particular agent involved, It represents the time at which an infected individual is infectious to contacts.
- Shedding is important to maintain a viral infection in populations of hosts. In some viral infections, such as rabies, humans represent dead-end infections, and shedding does not occur.

Apical Influenza virus Measles virus Vesicular stomatitis virus Basolateral

Further reading and material:

 Murray - Medical Microbiology 8th Edition Section 5: Virology Chapter 37 Chapter 38

 Jawetz, Melnick & Adelberg's Medical Microbiology, 26th edition-Section 4: Virology Chapter 30

Youtube:

Channel: Vincent Racaniello

Videos: Virology Lectures 2018 #11 + #12 + # 15