Glycogen Metabolism

Suggested Reading: Lippincott's Ilustrated reviews: Biochemistry

Glycogen **UDP-Glucose** Glucose 1-P Glucose 6-P Glucose

Sources of Blood Glucose

• Diet

- Starch, mono and disahccarides, glucose
- Sporadic, depend on diet,
- Gluconeogenesis
 - Sustained synthesis
 - Slow in responding to falling blood glucose level
- Glycogen
 - Storage form of glucose
 - Rapid response and mobilization.
 - Limited amount
 - Important energy source for exercising muscle.

* Extensively branched homopolysaccharide

* One molecule consists of hundreds of thousands of glucose units- up to M.W. of 100,000,000.

OH OH

Degradation of glycogen

Degradation of glycogen One glucose unit is removed at a time

From the nonreducing ends

Released in the form of glucose 1-phosphate

Glycogen is synthesized by adding glucose one by one UDP-Glucose s the active donor of glucose units

Formation of UDP-Glucose

Pyrophosphate

Glycogen Storage Diseases

- Genetic diseases
- Defect in an enzyme required for synthesis or degradation →
- Accumulation of excessive amount of glygcogen
- In one or more tissue
- Severity: FATAL in Infancy...... Mild disorder

Glycogen Storage Diseases (examples)

- | Glucose-6-phosphatase (von Gierk's) disease
 - Liver, kidney and intestine.
 - Severe fasting hypoglycemia
 - Hepatomegaly fatty liver.
 - Normal glycogen structure.
 - Progressive renal disease.
 - Growth retardation.

Glycogen Storage Diseases (examples)

- V Muscle glycogen phosphorylase (McArdle syndrome)
 - Only muscle is affected;
 - Weakness and cramping of muscle after exercise
 - no increase in [lactate] during exercise

Glycogen Storage Diseases (examples)

- II Lysosomes α (1 \rightarrow 4) glucosidase \rightarrow POMP Disease
- Degradation of glycogen in the lysosomes
- ≈ 3% of glycogen is degraded in the lysosomes
- Affects liver, heart and muscle
- Excessive glycogen in abnormal vacuoles in the lysosomes
- Massive cardiomegaly
- Normal blood sugar, normal glycogen structre
- Early death from heart failure.

Energy needed for glycogen synthesis

Glucose + ATP -----> Glucose 6-phosphate + ADP

Glucose 1-phosphate UTP \longrightarrow UDP-Glucose PP_i PP_i + H₂O \longrightarrow 2P_i UDP-Glucose + Glycogen_(n) \longrightarrow UDP + Glycogen_(n+1)

Glc. + ATP + UTP+Glycogen_(n) \rightarrow ADP + UDP +Glycogen_{(n+1}

The net reaction in glycogen synthesis and degradation

Glucose 1-phosphate + UTP UDP-Glucose + PP_i PP_i + H₂O \rightarrow 2P_i UDP-Glucose + Glycogen_(n) \rightarrow UDP + Glycogen_(n+1)

Glc. 1-phosph. + UTP+Glycogen_(n) JDP +Glycogen_{(n+1}

Degradation

 $Glycogen_{(n)} + P_i \iff Glycogen_{(n-1)} + Glc. 1-phosphate$

Allosteric Regulation Rapid response to cell's needs Available substate and ATP→ synthesis

↓↓Glucose and ↓ATP → Glycogenolysis

Phosphorylation at several sites

Inhibition is proportional to the degree of phosphorylation

GLYCOGEN SYNTHESIS

Calcium Activation of liver phosphorylase Kinase

Next Topic Metabolism of mono and disaccharides

