

Carbohydrates

Dr. Mamoun Ahram Summer, 2017-2018

Resource

This lecture

Campbell and Farrell's Biochemistry, Chapter 16

What are they?

- Carbohydrates are polyhydroxy aldehydes or ketones
- Saccharide is another name for a carbohydrate
- Functions:
 - Source of energy
 - Structure (cellulose and chitin)
 - Building blocks
 - Cellular recognition

Classification I

By the number of sugars that constitute the molecule

- Monosaccharides
- Disaccharides
- Oligosaccharides
- Polysaccharides

Carbohydrates – natural forms

- Most carbohydrates are found naturally in bound form rather than as simple sugars
 - Polysaccharides (starch, cellulose, inulin, gums)
 - Glycoproteins and proteoglycans (hormones, blood group substances, antibodies)
 - Glycolipids (cerebrosides, gangliosides)
 - Glycosides
 - Mucopolysaccharides (hyaluronic acid)
 - Nucleic acids (DNA, RNA)

Monosaccharides

- Basic chemical formula: (CH₂O)n
- They contain two or more hydroxyl groups.

Fisher projections or perspective structural formulas.

Common Monosaccharides

- Glucose:
 - Mild sweet flavor
 - Known as blood sugar
 - Essential energy source
 - Found in every disaccharide and polysaccharide
- Galactose:
 - Hardly tastes sweet & rarely found naturally as a single sugar
- Fructose:
 - Sweetest sugar, found in fruits and honey
 - Added to soft drinks, cereals, desserts

Galactose

CH2OH

Ċ=0

-H

-H

-OH

CH2OH

D-Tagulose

Classification 2

By the number of carbon atoms they contain

- Triose
- Tetrose
- Pentose
- Hexose
- Heptose

What is a chiral carbon?

Dihydroxyacetone (a ketose)

Note what a chiral carbon is...

Isomerism

Isomers of glucose

2ⁿ (n is the number of chiral carbons in a sugar molecule)

Search for: Glucose, Galactose Mannose

Enantiomerism

Sugar enantiomers (D-vs. L-)

D-Glyceraldehyde L-Glyceraldehyde

Ball-and-stick models

Which one(s) is a chiral carbon?

Isomerism

Stereoisomers, but non-mirror images and non-superimposable, then...*diastereomers*

Isomerism

Diastereomers that differ in the orientation of one chiral carbon...*epimers*

Is L-glucose epimer with D-mannose and D-galactose?

Hemiacetal and hemiketal: ether and alcohol on same carbon Acetal and ketal: two ethers on same carbon

What is the difference between hemiacetal and hemiketal and the difference between acetal and ketal?

Formation of a ring structure

Anomers

Anomers as Fischer projection

Chain to ring Left-right vs. up-down

Cyclic aldohexoses

Examples of Some Pyranose Forms of Hexoses

 α -D-glucopyranose

β-D-galactopyranose

 α -D-mannopyranose

CH2-OH

ĞН

н

ÓН

Н

ÓН

OH

 β -D-allopyranose

Cyclic ribofuranose

OH at a nomeric carbon down

OH at a nomeric carbon up

Nodified sugars

Sugar acids (oxidation)

Where is it oxidized? What does it form?

α-D-gluc<mark>ur</mark>onate

(D-glucuronic acid, GICUA) from oxidation of glucose C6 OH

D-gluconate (D-gluconic acid, GlcA) from oxidation of glucose C1 aldehyde)

Example 1

Example 2

galactaric acid

Example 3

c. Oxidation of primary alcohol end in biological systems

H-C=0 CHO H-C-OH H-C-OH HO-C-H HO-C-H Enzymes H-C-OH H-C-OH H-C-OH H-C-OH H0-C=O CH₂OH -uronic acids

(D-glucuronic acid, GlcUA) from oxidation of glucose C6 OH

Note

 Oxidation of ketoses to carboxylic acids does not occur, but they can be oxidized because of formation of enediol form

Benedict's test

Oxidation of cyclic sugars (lactone)

A more recent method for the detection of glucose, but not other reducing sugars, is based on the use of the enzyme glucose oxidase.

- Vitamin C (ascorbic acid) is an unsaturated lactone.
- Air oxidation of ascorbic acid, followed by hydrolysis of the ester bond, leads to loss of activity as a vitamin.
- A lack of fresh food can cause vitamin C deficiencies, which, in turn, can lead to scurvy.

Sugar alcohols (reduction)

What does it form?

Examples include sorbitol, mannitol, and xylitol, which are used to sweeten food products

Deoxy sugars (reduced sugars)

- One or more hydroxyl groups are replaced by hydrogens.
- An example is 2deoxyribose, which is a constituent of DNA.

Sugar esters (esterification)

What is the reacting functional group? Where does it react? What are the end products? Where are they used?

β-D-glucose-6-phosphate (an ordinary **phosphate ester**)

α-D-glucose-1-phosphate (a phosphoacetal)

O-Glycosides

What is the reacting functional group? Where does it react? What are the end products? Where are they used?

N-glycosides

- What is the reacting functional group? Where does it react? What are the end products? Where are they used?
- Examples: nucleotides (DNA and RNA)

Note

 Glycosides derived from furanoses are called furanosides, and those derived from pyranoses are called pyranosides, regardless if they are N- or Olinkded.

Amino sugars

- What is the reacting functional group? Where does it react? What are the end products? Where are they used?
- Further modification by acetylation

Disaccharides

- What are disaccharide? Oligosaccharides? Hetero- vs. homo-?
- What is the type of reaction?
- What is a residue?
- Synthesizing enzymes are glycosyltransferases
- Do they undergo mutarotation?
- Are products stable?

Distinctions of disaccharides

- The 2 specific sugar monomers involved and their stereoconfigurations (D- or L-)
- The carbons involved in the linkage (C-1, C-2, C-4, or C-6)
- The order of the two monomer units, if different (example: galactose followed by glucose)
- The anomeric configuration of the OH group on carbon 1 of each residue (α or β)

Abundant disaccharides

- Configuration
- Designation
- Naming (common vs. systematic)
- Reducing vs. non-reducing

Sucrose (α -D-Glucopyranosyl-(1 \rightarrow 2)- β -D-fructofuranose

 $\label{eq:barrender} \begin{array}{c} \text{Lactose} \\ \textbf{(}\beta\text{-}D\text{-}\textbf{Galactopyranosyl-(}1 \!\rightarrow\! 4\textbf{)}\text{-}\alpha\text{-}D\text{-}glucopyranose} \end{array}$

Maitose (α -D-Glucopyranosyl-(1 \rightarrow 4)- α -D-glucopyranose

Different forms of disaccharides

Lactose (β form) β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-glucopyranose Gal(β 1 \rightarrow 4)Glc

A disaccharide of β -D-glucose.

Sucrose

Sucralose (artificial sweetener)

Milk problems

- Lactose Intolerance: A deficiency of the enzme lactase in the intestinal villi allows lactase of intestinal bacteria to digest it producing hydrogen gas, carbon dioxide, and organic acids and leading to digestive problems (bloating and diarrhea).
- Galactosemia: Missing a galactose-metabolizing enzyme can result in galactosemia where nonmetabolized galactose accumulates within cells and is converted to the hydroxy sugar galactitol, which cannot escape cells. Water is drawn into cells and the swelling causes cell damage, particularly in the brain, resulting in severe and irreversible retardation. It also causes cataract.

Raffinose

- What are oligosaccharide?
- Example: raffinose
- It is found in Found in beans and vegetables like cabbage, brussel, sprouts, broccoli, asparagus.

Humans lack the alpha-galactosidase enzyme that is needed to break down raffinose, but intestinal bacteria can ferment it into hydrogen, methane, and other gases.

"You want that double-order of our world-famous baked beans for here... or, we sincerely hope... to go?"

Homework

- 1. Recognize the monosaccharides that make up raffinose.
- 2. What is the monosaccharide that is attached to *what* disaccharide?

Oligosaccharides as drugs

- Streptomycin and erythromycin (antibiotics)
- Doxorubicin (cancer chemotherapy)
- Digoxin (cardiovascular disease)

Polysaccharides

- What are polysaccharides?
- Homopolysaccharide (homoglycan) vs. heteropolysaccharides
- Features of polysaccharides:
 - Monosaccharides
 - 🔍 Length
 - Branching
 - Purpose:
 - Storage (glycogen, starch, dextran)
 - Structural (cellulose, pectin, chitin)

Starch

Glycogen vs. amylopectin

- Both are made from the same monomer and both are branched.
- Glycogen exists in animals and amylopectin in plants.
- Glycogen is more highly branched.
 - Branch points occur about every 10 residues in glycogen and about every 25 residues in amylopectin.
- Why is branching important?
 - It makes it more water-soluble and does not crystallize.
 - Easy access to glucose residues.

Dextran

- A storage polysaccharide
- Yeast and bacteria
- α-(1-6)-D-glucose with
 branched chains

Branches: 1-2, 1-3, or 1-4

Cellulose

Chitin

Pectin

What is the precursor?Where does it exist?

Are polysaccharides reducing?

A sample that contains only a few molecules of a large polysaccharide, each molecule with a single reducing end, might well produce a negative test because there are not enough reducing ends to detect.

Glycosaminoglycans

- What are they? Where are they located?
- Derivatives of an amino sugar, either glucosamine or galactosamine
- At least one of the sugars in the repeating unit has a negatively charged carboxylate or sulfate group

Localization and function of GAG

GAG	Localization	Comments
Hyaluronate	synovial fluid, vitreous humor, ECM of loose connective tissue	the lubricant fluid , shock absorbing As many as 25,000 disaccharide units
Chondroitin sulfate	cartilage, bone, heart valves	most abundant GAG
Heparan sulfate	basement membranes, components of cell surfaces	contains higher acetylated glucosamine than heparin
Heparin	component of intracellular granules of mast cells lining the arteries of the lungs, liver and skin	A natural anticoagulant
Dermatan sulfate	skin, blood vessels, heart valves	
Keratan sulfate	cornea, bone, cartilage aggregated with chondroitin sulfates	Only one not having uronic acid

Proteoglycans

Lubricants

- Structural components in connective tissue
- Mediate adhesion of cells to the extracellular matrix
- Bind factors that stimulate cell proliferation

Bacterial cell wall

Peptidoglycan

Glycoproteins

The carbohydrates of glycoproteins are linked to the protein component through either *O*-glycosidic or *N*glycosidic bonds

- The N-glycosidic linkage is through the amide group of asparagine (Asn, N)
- The O-glycosidic linkage is to the hydroxyl of serine (Ser, S), threonine (Thr, T) or hydroxylysine (hLys)

Significance of protein-linked sugars

Soluble proteins as well as membrane proteins

Purpose:

- Protein folding
- Protein targeting
- prolonging protein half-life
- Cell-cell communication
- Signaling

Blood typing

•

 \odot

 \odot

 \odot

Sialic acid

- N-acetylneuraminate
- Precursor: the amino sugar, neuraminic acid
- Location: a terminal residue of oligosaccharide chains of glycoproteins and glycolipids.

