

Buffers in human body: -

Enzymes and proteins are active and stable only at a certain pH, so we must maintain the pH of active enzymes in our body (blood, cells, etc.).

- In our blood, the pH should range between (7.35-7.45), any pH out of this range is a pathological condition.
- In our cells the pH should be 6.9 7.4 (wider range).
- In lysosomes the optimal pH for protein/sugar degradation is around 5.5

For this reason, we have a lot of buffers that can be used to help our body to maintain

its appropriate pH, the following are some examples:

Remember:

A buffer is a molecule that can donate

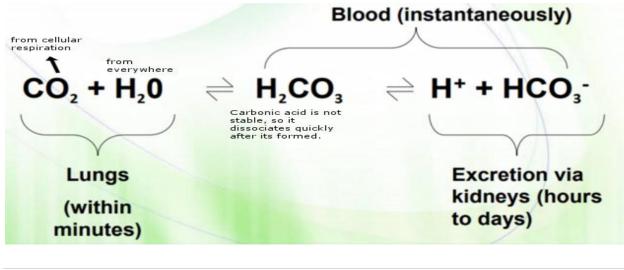
or accept H+ when the pH is disturbed

1- Carbonic acid/bicarbonate system (major in ECF (blood)).

2- Dihydrogen phosphate/monohydrogen phosphate system (in cells)

→ Notice: the pH in our cells is around 7.4 and the buffering capacity for monophosphate buffer is (6.2-8.2), therefore it is an excellent buffer.

Also, ATP, glucose-6-phosphate, diphosphoglycerates (RBC) can act as buffers inside cells.


3-Proteins: Proteins are very important buffers because they consist of amino acids which can donate or accept H⁺.

Examples of proteins:

A- Hemoglobin in blood which exists in very large quantities.

B- Other proteins in blood and cells.

Bicarbonate buffer:

 \uparrow This equation is totally balanced by two major organ systems: LUNGS AND KIDNEYS.

It can also be represented in two separate equations \rightarrow

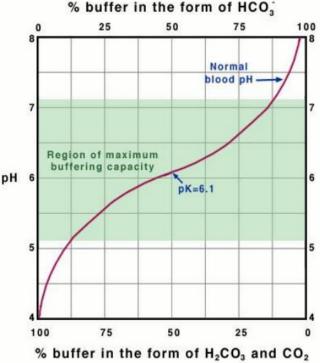
$$CO_{2}(d) + H_{2}O \xleftarrow{K_{b}} H_{2}CO_{3}$$
$$H_{2}CO_{3} \xleftarrow{K_{a}} H^{+} + HCO_{3}$$

NOTICE (in the picture):

The pka of bicarbonate buffer is 6.1 so the capacity ranges between (5.1-7.1), but the blood pH is 7.4!!!

The best explanation for this is that the range (5.1-7.1) is only true for a closed system (no interaction with the surroundings) like in a tube.

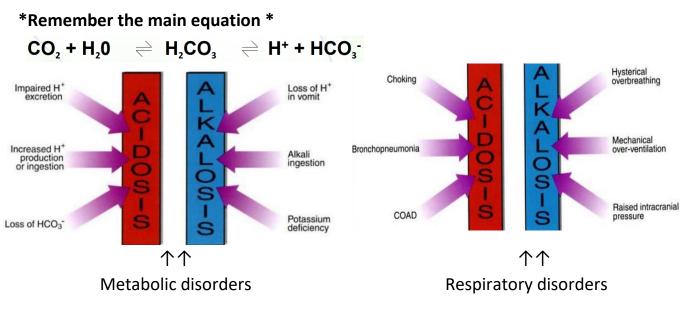
Carbonic acid/ bicarbonate pair is important for many reasons:


1- It is in an open system (continually interacts and exchanges with the

environment), your body can control rate of breathing to maintain pH (unconsciously).

2- Bicarbonate is present in a relatively high concentration in the ECF (24mmol/L) (can be controlled easily) (20 to 1 ratio with carbonic acid).

3- The components of the buffer system are effectively under physiological control: the CO₂ by the lungs, and the bicarbonate by the kidneys.


So, the buffer acts as a first line defense against pH change, the kidneys are the second line of defense and lungs are the third.

Pathological conditions:

There are two abnormal conditions that results from pH change, these conditions can be either metabolic or respiratory conditions, depending on the affected organ.

	1- Acidosis (pH<7.35)		2- Alkalosis (pH>7.45)	
TYPES	Metabolic (defective kidneys)	Respiratory (defective lungs)	Metabolic	Respiratory
CAUSES	 1-Production of ketone bodies (starvation): Diabetic people or in Ramadan the body is full of ketone bodies which are acidic, organs use them as a source of energy, they are produced from fatty acids). 2- low secretion of bicarbonate 3- when you take a lot of aspirin 	Pulmonary (asthma;emphysema) Happens when CO ₂ is accumulated in the body=> more H ₂ CO ₃ => more H ⁺ => less pH	 1-Administration of salts or bases. 2-High secretion of bicarbonate from kidneys 	Hyperventilation (anxiety) The Panic Attack (afraid of something) causes Vertigo because you can't control your breathing, the body automatically controls the rate of breathing (coma), the best solution is to breath is a bag to increase the CO ₂ %.
Processes	Low HCO3 ⁻ => more acid dissociates=> more H ⁺ => less pH	Difficulties in breathing =>CO ₂ accumulates in the body=> more H ₂ CO ₃ => more H ⁺ => less pH	High HCO₃ ⁻ => more CO₂=> less H ⁺ => high pH	hyperventilating (low CO2)=> decrease in H+=> high pH

Memorize only the main cases from above, but it's better to know them all.

3 | P a g e

Processes from slides: $\begin{array}{c} \underline{Metabolic\ Acidosis}\\ \underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Acidosis}\\ \underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Metabolic\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{Respiratory\ Alkalosis}\\\underline{H^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O\\\underline{R^+} + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H$

Compensation:

The body always tries to return the pH to its normal range.

The compensation is either respiratory or metabolic.

Problem	Metabolic	Respiratory
compensation	Respiratory	metabolic

This makes sense, because if the problem is in the kidney (metabolic), the kidney can't repair itself, so the compensation is done by the lungs (respiratory) and vice versa.

NOTICE: in the equation, the only two things that can be controlled are HCO3⁻ (by the kidneys) and CO₂ (by the lungs).

Acid-Base Disorder Change	Primary Change	Compensatory
Respiratory acidosis	pCO ₂ up	HCO ₃ ⁻ up
Respiratory alkalosis	pCO ₂ down	HCO ₃ ⁻ down
Metabolic acidosis	HCO ₃ ⁻ down	PCO ₂ down
Metabolic alkalosis	HCO ₃ ⁻ up	PCO ₂ up
H+ (aq) + HCO3 (aq)	H2CO3 (aq)	$H_2O_{(1)} + CO_2(g)$

All the arrows in this sheet depend on this equation

 $CO_2 + H_2 0 \Rightarrow H_2 CO_3 \Rightarrow H^+ + H CO_3^-$

			Problem (respiratory)		Compensate (metabolic)	
Case	Са	use	CO2	Reaction	HCO3-	Reaction
1	Hypoventil your b	ation (hold reath)	\uparrow	\rightarrow	\uparrow	÷
2	Hyperventila quio	ition (breath kly)	\downarrow	÷	\downarrow	÷
	Problem(r	Problem(metabolic)		Compensate(respiratory)		ution
case	HCO3-	Reaction	CO2	Reaction		
3	\downarrow	\rightarrow	\checkmark	÷	Brea	th fast
4	\uparrow	÷	\uparrow	\rightarrow	Hold yo	ur breath

Compensation can be divided into full compensation and a partial one.

We measure the pH, the concentration of CO₂ and HCO₃⁻

- if the concentrations of both, CO₂ and HCO₃⁻ are abnormal this means that the compensation has been completed.
- Now if the pH is normal, the compensation is full.
- If the pH is abnormal, the compensation is partial.

Full compensation

(study the picture first)

For further understanding:

1- when abnormal (high) concentrations of both CO₂ and HCO_3^- are present, there are two cases that are possible (the pH value determines the real cause):

	pН	pCO ₂	HCO ₃ -
Resp. acidosis	Normal	•	+
	But<7.40		
Resp. alkalosis	Normal	1	1.
	but>7.40	Ļ	
Met. Acidosis	Normal	- I	
	but<7.40	÷	+
Met. alkalosis	Normal		
	but>7.40	I	
			/ .

• High CO₂ is the primary problem, and high HCO₃- is caused due to compensation (case 1 in picture)

This called respiratory acidosis.

• High HCO₃- is the primary problem and high CO₂ is caused due to compensation (case 4 in picture)

This is called metabolic alkalosis.

2- When abnormal **(low)** concentrations of both CO2 and HCO3- are present, there are two cases that are possible (the pH value also determines the real cause):

 Low CO₂ is the primary problem and low HCO₃- is caused due to compensation. (case 2 in picture)

This called <u>respiratory alkalosis</u>.

 Low HCO₃- is the primary problem and low CO₂ is caused due to compensation (case 3 in picture)

This called metabolic acidosis.

	рН	pCO ₂	HCO ₃ -
Res.Acidosis	1	1	1
Res.Alkalosis	1	1	Å
Met. Acidosis	ţ	1	t
Met.Alkalosis	1	1	1

Partial compensation:

The 4 cases are the same as full compensation, the difference is the pH value, here it is abnormal (below 7.35 or above 7.45).

Check your grasp of the previous concepts:

- 1) If the pH was high and the CO₂ was low but the HCO₃- was normal, what is the condition?
 - The pH is high ----> alkalosis
 - CO2 is high ----> problem is respiratory
 - HCO3- is normal ---> there is no compensation yet.
- 2) Mohammed Tariq used to live at sea level, but for some circumstances he moved to the mountains, would he suffer alkaloses or acidosis?
 - Since he will suffer hyperventilation (no enough O₂), it would be alkaloses.

In the end: You just have to focus on the main equation and know the main concept of equilibrium, concentrations, cases and disorders.

Useful links:

https://www.youtube.com/watch?v=ArmELNEfXs0 => Bicarbonate Buffer System and pH Imbalances https://www.youtube.com/watch?v=lpBAEaBKusw => examples

GOOD LUCK!