

Acids, Bases and Water

Dr. Diala Abu-Hassan, DDS, PhD

Dr.abuhassand@gmail.com

MD summer

Dr. Diala Abu-Hassan

Required material and further reading

Required:

Handout

Text books:

Biochemistry. Campbell Chapter 2

Fundamentals of General, Organic, and Biological Chemistry. McMurry. Chapter 10 softcopy will be sent

The inorganic precursors: (18-64 daltons) Carbon dioxide, Water, Ammonia, Nitrogen(N9), Nitrate(NO3-)

What is **Biochemistry**?

Carbon dioxide

Metabolites: (50-250 daltons) Pyruvate, Citrate, Succinate, Glyceraldehyde-3-phosphate, Fructose-1,6-bisphosphate, 3-Phosphoglyceric acid

Building blocks: (100-350 daltons) Amino acids, Nucleotides, Monosaccharides, Fatty acids, Glycerol

Alanine (an amino acid)

Macromolecules: (10³-10⁹ daltons) Proteins, Nucleic acids, Polysaccharides, Lipids

Supramolecular complexes: (106-109 daltons) Ribosomes, Cytoskeleton, Multi-enzyme complexes

Organelles:

Vacuole

Nucleus, Mitochondria, Chloroplasts, Endoplasmic reticulum, Golgi apparatus,

Dr. Diala Abu-Hassan

Biochemistry is the science concerned with studying the various molecules that occur in living cells and organisms and their chemical reactions.

Why Biochemistry is important to Human Biology?

Biochemistry is an intrinsically beautiful and fascinating body of knowledge.
 "Lubert Stryer"
 Because it unravels the details of the most fundamental processes in biological systems.

2. Biochemistry massively influences medicine and treatment development, ex. sickle-cell anemia, cystic fibrosis, hemophilia, etc.

3. By advances in biochemistry, researchers can tackle many questions in biology and medicine, ex. Biochemical changes in diseases, causes of diseases, lab tests..etc.

- 1. Molecular and biochemical basis of diseases become clear.
- 2. Manipulate the biochemical processes and simulating them in vivo and in vitro.
- 3. Molecules of life can be prepared on the bench Dr. Diala Abu-Hassan

What makes biomolecules special?

Table 1.1					
Functional Group	os of Biochemical Importance				
Class of Compound	General Structure	Characteristic Functional Group	Name of Functional Group	Example	
Alkenes	$RCH = CH_2$ RCH = CHR $R_2C = CHR$ $R_2C = CR_2$	c=c	Double bond	CH _z =CH _z	
Alcohols Ethers Amines	ROH ROR RNH ₂ R.NH	OH O	Hydroxyl group Ether group	CH,CH,OH CH,OCH,	
Thiols	R,N RSH	-N -SH 0	Amino group Sulfhydryl group	CH,NHz CH,SH	
Aldehydes	R—С́—н	_ć	Carbonyl group	сн,сн	
Ketones Carboxylic acids	R—C—R O R—C—OH	—с— о —с—он	Carbonyl group Carboxyl group	CH,C CH, O CH,C OH	
Esters	R—C—OR	–C–or	Ester group	СН,С ОСН, о	
Amides	$ \begin{array}{c} \mathbf{R} \longrightarrow \mathbf{C} \\ \mathbf{O} \\ \mathbf{R} \longrightarrow \mathbf{C} \\ \mathbf{C} \\ \mathbf{R} \longrightarrow \mathbf{C} \\ \mathbf{C} \\ \mathbf{N} \\ \mathbf{R} \\ \mathbf{C} \\ \mathbf$	N	Amide group	CH₃C N(CH₃)₂	
Phosphoric acid esters Phosphoric acid anhydrides	$ \begin{array}{c} R - C - NH_{z} \\ O \\ H \\ R - O - P - OH \\ O \\ O \\ R - O - P - O - P - OH \\ O \\ O$	о —0—Р—ОН ОН ОН —Р—О—Р— — — — — — — — — — — —	Phosphoric ester group Phosphoric anhydride group	СН ₃ —О—Р—ОН ОН НО—Р—О—Р—ОН ОН ОН ОН ОН	

-The cellular apparatus of living organisms is made up of carbon compounds.

Arrhenius Definition of Acids and Bases and Their Reactions

Arrhenius Acids and Bases Acids are

- Acids in H₂O are H⁺ donors
- Bases in H_2O are OH^- donors

Neutralization of acids and bases produces salt and water.

NaOH
$$\xrightarrow{H_2O}$$
 Na⁺ + OH⁻
HCL $\xrightarrow{H_2O}$ Cl⁻ + H⁺
H⁺ + H- Ö: \longrightarrow H₃O⁺
H

Arrhenius 1903 Nobel Prize

Drawbacks:

- 1. Reactions has to happen in aqueous solutions
- 2. H_3O^+ is released but not H⁺

Bronsted-Lowry Definition of Acids and Bases and Their Reactions

Bronsted-Lowry Acids and Bases (1923)

- Acids donate H⁺
- Bases accept H⁺ (non-bonding pairs)

Conjugate acid-base pair

Lewis Definition of Acids and Bases and Their Reactions

- Acids accept electrons
- Bases donate electrons (non-bonding pairs)

Common Acids

- HCI- hydrochloric- stomach acid
- H₂SO₄- sulfuric acid car batteries
- HNO₃ nitric acid explosives
- HC₂H₃O₂- acetic acid vinegar
- H₂CO₃-carbonic acid sodas
- H₃PO₄- phosphoric acid -flavorings

Common Bases

- NaOH- sodium hydroxide (LYE) soaps, drain cleaner
- Mg (OH)₂ magnesium hydroxide-antacids
- AI(OH)₃-aluminum hydroxide-antacids, deodorants
- NH₄OH-ammonium hydroxide- "ammonia"

Dr. Diala Abu-Hassan

Water as both an acid and a base <u>Amphoterism</u> - an ion or molecule can act as an acid or base depending upon the reaction conditions

Water in NH₃ serves as an acid

H ₂ O	+ NH ₃	$\implies \mathrm{NH}_4^+$	+ OH ⁻
acid	base	acid	base

Water in acetic acid serves as a base

Why water is important to our bodies?

1. ~60% of our body is water, 70-85% of the weight of a typical cell

2. A solvent of many substances our bodies need such as glucose, ions, etc.

3. Acts as a medium in which acids and bases release their chemical groups to maintain a constant cellular environment or homeostasis.

4. Essential buffer that maintain pH

5. Temperature regulation- high sppecific heat capacity.

6. A participant in many biochemical reactions.

Water distribution in body compartments

FIG. 4.2. Fluid compartments in the body based on an average 70-kg man.

Noncovalent Interactions

Electrostatic, or ionic interactions (salt bridges)

- Interactions between oppositely charged groups

Van der Waals forces

 Attractions between transient dipoles generated by the rapid movement of electrons of all neutral atoms. 1-5 kj/mole

Hydrophobic interactions 5-30 kj/mole

- Self-association of nonpolar compounds in an aqueous environment.
- Minimize unfavorable interactions between nonpolar groups and water

Hydrogen bonds

- The two strands of the DNA helix. 10-30 kj/mole

Types of noncovalent interactions

TYPE OF INTERACTION	MODEL	EXAMPLE	OF ENERGY ON DISTANCE	COMMENT .
(a) Charge-charge		—NH ₃ ОС—	1/r	Longest-range lorce, nondirectional
(b) Charge-dipole		-NH, O+ H	1/12	Depends on orientation of dipole
(c) Dipole-dipole		-0<+ H −0<+ H	1/r3	Depends on mutual orientation of dipoles
(d) Charge-Induced dip		-ŇH₃	1/14	Depends on polarizability of molecule in which dipole is induced
(e) Dipole-induced dipo		<"+	1/15	Depends on polarizability of molecule in which dipole is induced
(1) Dispersion		()	1/r ^a	Involves mutual synchronization of fluctuating charges
(g) Hydrogen bond	DONOR-H ACCEPTOR	N-H-HO == C	Length of bond fixed	Depends on donor- acceptor pair

Dr. Diala Abu-Hassan

Properties of Noncovalent Interactions

- 1. Reversible
- 2. Relatively weak.1-30 kj/mole vs.350 kj/mole in C—Cbond

3. Molecules interact and bind specifically.

Covalent vs Noncovalent bonds

Table 2.3			
Some Bond Energies			
		Energy	
	Type of Bond	(kJ mol ^{−1})	(kcal mol ⁻¹)
Covalent Bonds	O—H	460	110
(Strong)	H—H	416	100
	C—H	413	105
Noncovalent Bonds	Hydrogen bond	20	5
(Weaker)	Ion-dipole interaction	20	5
	Hydrophobic interaction	4-12	1-3
	Van der Waals interactions	4	1

*Note that two units of energy are used throughout this text. The kilocalorie (kcal) is a commonly used unit in the biochemical literature. The kilojoule (kJ) is an SI unit and will come into wider use as time goes on. The kcal is the same as the "Calorie" reported on food labels.

-Noncovalent forces significantly contribute to the structure, stability, and functional competence of macromolecules in living cells.

- Can be either attractive or repulsive,

-Involve interactions both within the biomolecule and between it and the water of the surrounding environment.

Polarity

CO_2 has polar bonds but is nonpolar $\delta - \delta + \delta - \delta - \delta - C = O$

Linear- no dipole moment

Water structure

Electronegativity of O atom is 3.5 Electronegativity of H atom is 2.1

Water is electrically neutral (net charge is zero) Bent geometry \rightarrow dipole

Covalent bond energy is 460 kj/mole (110 kcal)

Water and Hydrogen Bonds (H-bonds)

-A hydrogen bond is a weak noncovalent interaction between the H of one molecule and the more electronegative atom of an acceptor molecule.

-A dipolar molecule with an uneven distribution of electrons between the hydrogen and oxygen atoms.

- Forms H-bonds with other polar molecules, thus acts as a solvent.

FIG. 4.3. Hydrogen bonds between water molecules. The oxygen atoms are shown in *black*.

Water as a solvent

H-bonds between water and polar molecules. *R denotes additional atoms*.

Hydration shells surrounding anions and cations. where water is $\delta^{+} \xrightarrow{H} O \delta^{-}$

Table 4.1 Distribution	Distribution of fons in Douy Fluids				
	ECFª (mmol/L)	ICF (mmol/L)			
Cations					
Na ⁺	145	12			
K+	4	150			
Anions					
CI-	105	5			
HCO ₃ ⁻	25	12			
Inorganic phosphate	2	100			

Table 4.1 Distribution of lons in Body Fluids

ECF, extracellular fluid; ICF, intracellular fluid.

^aThe content of inorganic ions is very similar in plasma and interstitial fluid, the two components of the ECF.

Water as a solvent

Hydrogen Bonds (H-bonds) and Temperature

H-bond is stronger if

X—H ----- A

A is O, N or F X is O, N or F

Average number of H-bond in liquid water at 10°C is 3.4 in ice crystals is 4

Number of H-bonds decrease with higher temperatures

Physical properties of water

TABLE 2-1	E 2–1 Melting Point, Boiling Point, and Heat of Vaporization of Some Common Solvents				
		Melting point (°C)	Boiling point (°C)	Heat of vaporization (J/g)*	
Water		0	100	2,260	
Methanol (CH ₃ C	OH)	-98	65	1,100	
Ethanol (CH ₃ CI	H ₂ OH)	-117	78	854	
Propanol (CH ₃ C	CH ₂ CH ₂ OH)	-127	97	687	
Butanol (CH ₃ (C	H ₂) ₂ CH ₂ OH)	-90	117	590	
Acetone (CH ₃ C	OCH ₃)	-95	56	523	
Hexane (CH ₃ (C	$H_2)_4CH_3)$	-98	69	423	
Benzene (C ₆ H ₆))	6	80	394	
Butane (CH ₃ (C	$H_{2})_{2}CH_{3})$	-135	-0.5	381	
Chloroform (CH	ICl ₃)	-63	61	247	

*The heat energy required to convert 1.0 g of a liquid at its boiling point and at atmospheric pressure into its gaseous state at the same temperature.

It is a direct measure of the energy required to overcome attractive forces between molecules in the liquid phase.

H-bonding gives water its unusual properties

Higher melting and boiling points

Heat of vaporization

Higher freezing point

Surface tension

H-bond has:

A bond energy of 20 kj/mole

Life time 1x 10⁻⁹ second

Highly cohesive (ice)

Hydrophobic interactions and micelle formation

Dispersion of lipids in H₂O

Each lipid molecule forces surrounding H₂O molecules to become highly ordered.

Clusters of lipid molecules

Only lipid portions at the edge of the cluster force the ordering of water. Fewer H₂O molecules are ordered, and entropy is increased.

in a cage like structure

Micelles

All hydrophobic groups are sequestered from water; ordered shell of H₂O molecules is minimized, and entropy is further increased.

Water and Thermal Regulation

Water structure resists sudden and large temperature changes because:

High thermal conductivity thus, facilitates heat dissipation from high energy consumption areas into the body water pool.

High heat of fusion, so a large drop in temperature is needed to convert liquid water to ice.

High heat capacity and heat of vaporization; when liquid water (sweating) is converted to a gas and evaporates from the skin, we feel a cooling effect.

Measuring concentrations

Molarity: the number of moles in a liter of solution

Unit: Mole/Liter = M

```
mM = 10^{-3} M, uM = 10^{-6} M
```

Symbol: [X]

 $Concentration = \frac{Amount of solute}{Amount of solvent}$

Dissolve 2 moles of glucose in 5 liters of H₂0. what is the concentration?

[Glucose] = 2/5 = 0.4 M

Acid and Base Strength

- Some acids can cause burns if come in contact with skin, other acids are safe. why?
- How easy can the acid produce proton
 - Strong acid: gives up H⁺ easily (100% dissociated in water)

HCI \longrightarrow H⁺ + CI⁻

Weak acid: gives up H⁺ with difficulty (less than 100% dissociated)

 $CH_3COOH \longrightarrow H^+ + CH_3COO^-$

Acid dissociation constant, K_a

 $HA + H_2O \iff H_3O^+ + A^-$

So the acid dissociation constant is as follows:

$$K_a = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$$

 $[H_2O] = 55.5$ M and is constant in all equations

Acid dissociation constant

– The general ionization of an acid is as follows:

$$HA \leftrightarrow H^+ + A^-$$

So the acid dissociation constant is as follows:

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

There are many orders of magnitude spanned by K_a values, so pK_a is used instead:

$$pK_a = \log 1/K_a = -\log_{10} K_a$$

The larger the value of the pK_a , the smaller the extent of dissociation.

The equilibrium constant, Ka

$$K_{\rm a} = \frac{[\rm H^+][\rm A^-]}{[\rm HA]}$$

Larger K_a means: More dissociation Smaller pK_a Stronger acid

	TABLE 8-2	Acidity Constants in Water at 25°C			
10	Acid	Formula	Conjugate Base	K _a	рК _а
	Hydriodic	HI	Ι-	$\approx 10^{11}$	≈ -11
	Hydrobromic	HBr	Br ⁻	$\approx 10^9$	≈ -9
	Perchloric	HClO ₄	ClO_4^-	$\approx 10^7$	≈ -7
	Hydrochloric	HCI	Cl ⁻	$\approx 10^7$	≈ -7
	Chloric	HClO ₃	ClO_3^-	$\approx 10^3$	≈ -3
	Sulfuric (1)	H_2SO_4	HSO_4^-	$\approx 10^2$	≈ -2
	Nitric	HNO ₃	NO_3^-	≈ 20	\approx -1.3
	Hydronium ion	H_3O^+	H ₂ O	1	0.0
	Urea acidium ion	(NH ₂)CONH ₃ ⁺	(NH ₂) ₂ CO (urea)	6.6×10^{-1}	0.18
	Iodic	HIO ₃	IO_3^-	1.6×10^{-1}	0.80
	Oxalic (1)	$H_2C_2O_4$	$HC_2O_4^-$	5.9×10^{-2}	1.23
	Sulfurous (1)	H_2SO_3	HSO_3^-	1.5×10^{-2}	1.82
	Sulfuric (2)	HSO_4^-	SO_4^{2-}	1.2×10^{-2}	1.92
	Chlorous	HClO ₂	ClO_2^-	1.1×10^{-2}	1.96
	Phosphoric (1)	H ₃ PO ₄	$H_2PO_4^-$	7.5×10^{-3}	2.12
	Arsenic (1)	H ₃ AsO ₄	$H_2AsO_4^-$	5.0×10^{-3}	2.30
	Chloroacetic	CICH ₂ COOH	CICH ₂ COO ⁻	1.4×10^{-3}	2.85
	Hydrofluoric	HF	F^{-}	6.6×10^{-4}	3.18
	Nitrous	HNO ₂	NO_2^-	4.6×10^{-4}	3.34
	Formic	НСООН	HCOO ⁻	$1.8 imes 10^{-4}$	3.74

© 2003 Thomson - Brooks/Cole

Dr. Diala Abu-Hassan

Decrease acid strength

Acid dissociation constant

Acid Dissociation Constants and pK_a Values for Some Weak Electrolytes (at $25^{\circ}C$)				
Acid	$K_{\rm a}$ (M)	pK _a		
HCOOH (formic acid)	1.78×10^{-4}	3.75		
CH ₃ COOH (acetic acid)	$1.74 imes10^{-5}$	4.76		
CH ₃ CH ₂ COOH (propionic acid)	$1.35 imes10^{-5}$	4.87		
CH ₃ CHOHCOOH (lactic acid)	$1.38 imes10^{-4}$	3.86		
HOOCCH ₂ CH ₂ COOH (succinic acid) pK_1^*	$6.16 imes10^{-5}$	4.21		
HOOCCH ₂ CH ₂ COO ^{$-$} (succinic acid) pK ₂	$2.34 imes10^{-6}$	5.63		
H_3PO_4 (phosphoric acid) pK_1	$7.08 imes10^{-3}$	2.15		
$H_2PO_4^-$ (phosphoric acid) pK_2	$6.31 imes10^{-8}$	7.20		
HPO_4^{2-} (phosphoric acid) pK_3	$3.98 imes10^{-13}$	12.40		
$C_3N_2H_5^+$ (imidazole)	$1.02 imes10^{-7}$	6.99		
$C_6O_2N_3H_{11}^+$ (histidine–imidazole group) pK_R^+	$9.12 imes10^{-7}$	6.04		
H_2CO_3 (carbonic acid) pK_1	$1.70 imes10^{-4}$	3.77		
HCO_3^- (bicarbonate) pK_2	$5.75 imes10^{-11}$	10.24		
(HOCH ₂) ₃ CNH ₃ ⁺ (<i>tris</i> -hydroxymethyl aminomethane)	$8.32 imes 10^{-9}$	8.07		
NH4 ⁺ (ammonium)	5.62×10^{-10}	9.25		
CH ₃ NH ₃ ⁺ (methylammonium)	2.46×10^{-11}	10.62		

*These pK values listed as pK_1 , pK_2 , or pK_3 are in actuality pK_a values for the respective dissociations. This simplification in notation is used throughout this book.

 ${}^{\dagger}pK_{R}$ refers to the imidazole ionization of histidine.

Data from CRC Handbook of Biochemistry, The Chemical Rubber Co., 1968.

Base dissociation constant

Reverse the reaction:

$$BH^+ \xrightarrow{} B + H^+$$

$$K_a = \frac{[B][H^+]}{[BH^+]}$$
Weak Bases

Name	Formula	Conjugate Acid	$K_{ m b}$
Ammonia	NH ₃	$\mathrm{NH_4}^+$	$1.8 imes 10^{-5}$
Methylamine	CH ₃ NH ₂	CH ₃ NH ₃ ⁺	4.38×10^{-4}
Ethylamine	$C_2H_5NH_2$	$C_2H_5NH_3^+$	5.6×10^{-4}
Aniline	C ₆ H ₅ NH ₂	$C_6H_5NH_3^+$	$3.8 imes 10^{-10}$
Pyridine	C ₅ H ₅ N	$C_5H_5NH^+$	1.7×10^{-9}

Strong Acids

- Dissociate readily
- Ka is very large
- Examples: Hydrochloric, Nitric; Sulfuric

Ex.
$$HCI \rightarrow H^+ + CI^-$$

Ex.1 M solution of HCI has a [H⁺] of 1 M 1 mM HCI solution has a [H⁺] of 1 mM 0.1 M H₂SO₄ solution has a [H⁺] of 0.2 M

Weak Acids

- Dissociate slightly
- Ka is smaller than strong acids
- Examples: Acetic, Boric, Nitrous, Phosphoric, Sulfurous
- Ex. $CH_3COOH + H_2O \iff CH_3COO^- + H_3O^+$ $Ka = [H+][CH_3COO^-]$ $[CH_3COOH]$

What is the H+ of a 0.1 M solution of acetic acid? Ka= 1.74×10^{-5}

 $1.74 \times 10^{-5} = x^2/0.1$

 $x^2 = 1.74 X 10^{-6}$, or $x = 1.32 X 10^{-3} M$

Equilibrium constant and the pH of water

 H_2O dissociates to a slight extent to form hydrogen (H⁺) and hydroxyl (OH⁻) ions.

$$H_2O \longrightarrow H^+ + OH^-$$

 $K_{eq} = \frac{[H^+][OH^-]}{[H_2O]}$
 $K_{eq} = \frac{(10^{-7})(10^{-7})}{55.5} = 1.8 \times 10^{-16}$

Because the concentration of H_2O in pure water is essentially constant, a new constant, K_w , the ion product of water, can be written as

$$K_{\rm w} = 55.5 \ K_{\rm eq} = 10^{-14} = [{\rm H^+}][{\rm OH^-}]$$

[H+] of pure water is only 0.0000001 M

Dissociation of water

• $K_w = [H^+] [OH^-] = 10^{-14}$

Example: A solution has an $[OH^{-}] = 10^{-9} M$

$$[H_3O^+] = 10^{-5} M$$

Problem solving

Example:

What is the [H⁺] of a 0.01 M NaOH solution?

```
Kw = [H^+] \times [OH^-] = [H^+] \times 10^{-2} = 10^{-14}
[H^+] = 10^{-12} M
```

Example:

What is the [OH⁻] of a 0.01 M HCl solution?

```
Kw = [H^+] \times [OH^-] = 10^{-2} \times [OH^-] = 10^{-14}
```

```
[OH^{-}] = 10^{-12} M
```

Example:

Find the K_a of a 0.04 M weak acid HA whose [H⁺] is 1 x 10^{-4} ?

HA \longrightarrow H⁺ + A⁻

 $K_{a} = [A^{-}] [H^{+}] / [HA] = [H^{+}]^{2} / [HA] = 10^{-4} \times 10^{-4} / 0.04 = 2.5 \times 10^{-7}$

Example 2:

What is the $[H^+]$ of a 0.05 M Ba $(OH)_2$?

 $Ba(OH)_2 \longrightarrow Ba + 2OH^2$

 $[OH^{-}] = 2x \ 0.05 = 0.10 \ M = 1 \ x \ 10^{-1}$

 $[H^+] = 1 \times 10^{-13}$

Example 4:

The [H⁺] of a 0.03 M weak base solution is 1 x 10⁻¹⁰ M. Calculate pKb?

$$B + H_2O \longrightarrow BH^+ + OH^-$$

 $[OH^{-}] = 10^{-4}$ K_b = (10⁻⁴ x 10⁻⁴) / 0.03 = 3.33 x 10⁻⁷ M pK_b = -log K_b = 6.48

Measuring the acidity of solutions, pH

 $pH = -log_{10} [H^+]$

pH Scale

The hydrogen ion and hydroxyl ion concentrations are given in moles per liter at 25°C.

рН	[I	[+]	[OH ⁻]	1
0	(10^{0})	1.0	0.00000000000001	(10^{-14})
1	(10^{-1})	0.1	0.0000000000001	(10^{-13})
2	(10^{-2})	0.01	0.000000000001	(10^{-12})
3	(10^{-3})	0.001	0.00000000001	(10^{-11})
4	(10^{-4})	0.0001	0.000000001	(10^{-10})
5	(10^{-5})	0.00001	0.000000001	(10^{-9})
6	(10^{-6})	0.000001	0.00000001	(10^{-8})
7	(10^{-7})	0.0000001	0.0000001	(10^{-7})
8	(10^{-8})	0.00000001	0.000001	(10^{-6})
9	(10^{-9})	0.000000001	0.00001	(10^{-5})
10	(10^{-10})	0.0000000001	0.0001	(10^{-4})
11	(10^{-11})	0.00000000001	0.001	(10^{-3})
12	(10^{-12})	0.000000000001	0.01	(10^{-2})
13	(10^{-13})	0.0000000000001	0.1	(10^{-1})
14	(10^{-14})	0.00000000000001	1.0	(10^{0})

pН

The pH scale is a logarithmic scale.

One pH unit difference implies a 10-fold difference in [H+].

Example: lemon juice at pH 2.0 contains more than 100 times as much H+ as orange juice at pH 4.0 $pH = -\log [H_3O^+]$

 $[H_3O^+] = 10^{-pH}$

Example 1: $[H_3O^+]$ in household bleach is 10^{-12} M

 $pH = -\log [10^{-12}] = 12$

Example 2: Orange juice has a pH of 4

 $[H_3O^+] = 10^{-4} M$

Fluid	pН
Household lye	13.6
Bleach	12.6
Household ammonia	11.4
Milk of magnesia	10.3
Baking soda	8.4
Seawater	8.0
Pancreatic fluid	7.8 - 8.0
Blood plasma	7.4
Intracellular fluids	
Liver	6.9
Muscle	6.1
Saliva	6.6
Urine	5-8
Boric acid	5.0
Beer	4.5
Orange juice	4.3
Grapefruit juice	3.2
Vinegar	2.9
Soft drinks	2.8
Lemon juice	2.3
Gastric juice	1.2 - 3.0
Battery acid	0.35

pH problem solving

Example 1:

What is the pH of a solution whose hydrogen ion concentration is 3.2×10^{-4} mol/L?

 $pH=-log[H^+]$

```
= -\log (3.2 \times 10^{-4})
```

```
= -\log (3.2) - \log (10^{-4})
```

```
= -0.5 + 4.0
```

pH in solutions

pH scale for some common substances

	Relations	hip among [H ⁺],	OH ⁻], and pH
	[H+] (mol/L)	[OH ⁻] (mol/L)	pH Aqueous system
	1 × 10°	1 × 10 ⁻¹⁴	0.0 - 1MHCI
↑ (1 × 10 ⁻¹	1 × 10 ⁻¹³	1.0 -0.1 <i>M</i> HCl
dity	1 × 10 ⁻²	1 × 10 ⁻¹²	2.0 Gastric juice
g aci	1 × 10 ⁻³	1 × 10 ⁻¹¹	3.0
asing	1×10^{-4}	1 × 10 ⁻¹⁰	4.0 - Tomato juice
ncre	1 × 10 ⁻⁵	1 × 10 ⁻⁹	5.0 -Black coffee
-	1×10^{-6}	1 × 10 ⁻⁸	6.0Milk
Neutral	1×10^{-7}	1 × 10 ⁻⁷	7.0 -Pure water
₹	1 × 10 ⁻⁸	1 × 10 ⁻⁶	8.0 [*] Blood
asic	1 × 10 ⁻⁹	1 × 10 ⁻⁵	9.0 ¹ Sodium bicarbonate,
ng b	1×10^{-10}	1×10^{-4}	10.0
easi	1×10^{-11}	1 × 10 ⁻³	11.0 - Milk of magnesia
Incr	1 × 10 ⁻¹²	1 × 10 ⁻²	12.0 - Washing soda
*	1 × 10 ⁻¹³	1 × 10 ⁻¹	13.0 ← 0.1 <i>M</i> NaOH
	1×10^{-14}	1×10^{0}	14.0 - 1 <i>M</i> NaOH

Strong Acids and pH

$$HCI \rightarrow H^+ + CI^-$$

[H⁺] = [acid]

Ex.1 M solution of HCl has a pH of 01 mM HCl solution has a pH of 30.1 M NaOH solution has a pH of 13

Dissociation of water

- $K_w = [H^+] [OH^-] = 10^{-14}$
- Valid for acidic, basic, neutral and pure H₂O

$$- pH = - log [H^+]$$

- $pOH = log [OH^-]$
- pH + pOH = 14

Example: A solution has an $[OH^{-}] = 10^{-9} M$

 $[H_3O^+] = 10^{-5} M \rightarrow pH = 5$

Enzyme activity and pH

FIGURE 2.12 pH versus enzymatic activity. Pepsin, trypsin, and lysozyme all have steep pH optimum curves. Pepsin has maximum activity under very acidic conditions, as would be expected for a digestive enzyme that is found in the stomach. Lysozyme has its maximum activity near pH 5, while trypsin is most active near pH 6. Example:

Find the K_a of a 0.04 M weak acid HA whose pH is 4.0?

HA \longrightarrow H⁺ + A⁻

 $K_a = [A^-] [H^+] / [HA] = [H^+]^2 / [HA] = 10^{-4} \times 10^{-4} / 0.04 = 2.5 \times 10^{-7}$

Example 2:

What is the pH of a 0.05 M $Ba(OH)_2$?

 $Ba(OH)_2 \longrightarrow Ba + 2OH^2$

 $[OH^{-}] = 2x \ 0.05 = 0.10 \ M = 1 \ x \ 10^{-1} \ pOH = - \log 1 \ x \ 10^{-1} = 1$

Remember $pOH = -log [OH^-]$

pH= 14-1 = 13 [H⁺] = 1x 10⁻¹³ Example:

The K_b for ammonia is 1.8×10^{-5} M. What is the pH of 1×10^{-2} M of ammonia?

 $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$

```
K_{b} = [NH_{4}^{+}] [OH^{-}] / [NH_{3}]
```

 $1.8 \times 10^{-5} = [OH^{-}]^{2} / 0.01$

 $[OH^{-}] = 4.24 \times 10^{-4} M$

 $pOH = -log 4.24 \times 10^{-4} = 3.37$

pH = 14 - 3.37 = 10.63

Henderson-Hasselbalch Equation

– The dissociation of a weak acid is as follows:

$$HA \longleftarrow H^+ + A^-$$

The acid dissociation constant is as follows:

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Rearranging this expression in terms of the parameter of interest [H+] gives the following:

$$[H^+] = \frac{K_a[HA]}{[A^-]}$$

Henderson-Hasselbalch Equation

Take the log of both sides:

$$\log[H^+] = \log K_a + \log \frac{[HA]}{[A^-]}$$

Change the signs , remember $pK_a = -log K_a$:

$$pH = pK_a - \log \frac{[HA]}{[A^-]}$$

or
$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

What happens when

pH = pKa

Substance protonation and deprotanation are in equillibruim.

pH < pKa H⁺ on, substance protonated

pH > pKa

H⁺ off, substance deprotonated

pH= pKa -1

Base/acid = 0.1

pH=pKa + 1

Base/acid = 10

Table 2.7			
pH Values and Base/Acid Ratios for Buffers			
If the pH equals	The ratio of base form/acid form equals		
$pK_s = 3$	1/1000		
$pK_a - 2$	1/100		
р <i>К</i> _в – 1	1/10		
pK,	1/1		
$pK_{x} + 1$	10/1		
pK + 2	100/1		
p <i>K</i> _a + 3	1000/1		

Monoprotic- and PolyproticAcids

- 1. Monoprotic acids have only one ionizable proton.
- 2. Polyprotic acids have more than one ionizable proton.
- 3. The protons are removed in steps, not all at once.

$$CH_3COOH + NaOH \implies CH_3COO^-Na^+ + H_2O$$

Polyprotic Acids

Sulfuric acid is a strong acid in its first dissociation step and a weak acid in its second step.

H_2SO_4 (aq) \rightarrow H^+ (aq) + HSO_4^- (aq)	K _{a1} ≈ 1.0x10 ²
HSO_4^- (aq) \Longrightarrow H^+ (aq) + SO_4^{2-} (aq)	K _{a2} ≈ 1.2x10 ⁻²

Polyprotic Acids

Name	Formula	<i>K</i> _{a1}	K_{a_2}	K_{a_3}
Phosphoric acid	H ₃ PO ₄	$7.5 imes 10^{-3}$	$6.2 imes 10^{-8}$	4.8×10^{-13}
Arsenic acid	H ₃ AsO ₄	5×10^{-3}	$8 imes 10^{-8}$	6×10^{-10}
Carbonic acid*	H_2CO_3	4.3×10^{-7}	$4.8 imes 10^{-11}$	
Sulfuric acid	H_2SO_4	Large	1.2×10^{-2}	
Sulfurous acid	H_2SO_3	1.5×10^{-2}	1.0×10^{-7}	
Hydrosulfuric acid [†]	H_2S	$1.0 imes 10^{-7}$	$\approx 10^{-19}$	
Oxalic acid	$H_2C_2O_4$	6.5×10^{-2}	$6.1 imes 10^{-5}$	
Ascorbic acid	$H_2C_6H_6O_6$	7.9×10^{-5}	1.6×10^{-12}	
(vitamin C)				

- It is <u>always</u> easier to remove the first proton in a polyprotic acid than the second.

- $K_{a1} > K_{a2} > K_{a3}$

A plot of the fractions of H_2CO_3 , HCO_3^- and CO_3^{2-} At pH = 9.00 $H_2CO_3 \approx 0\%$, $HCO_3^- = 95\%$ and $CO_3^{2-} = 5\%$ At pH = 10.00 $H_2CO_3 \approx 0\%$, $HCO_3^- = 68\%$ and $CO_3^{2-} = 32\%$

61

Titration

Titration is an experiment in which measured amounts of base are added to a measured amount of acid while following up changes in pH using a pH meter.

Titration curves

In the region small pH changes upon addition of acid or base, the acid/base ratio varies within a narrow range (10:1 at one end and 1:10 at the other end).

The point in the titration at which the acid is exactly neutralized is called the **equivalence point.**

Titration curves

Once OH⁻ is added to the reaction, it reacts completely with HA to form A⁻

$$[A^{-}] = \frac{X}{V}$$

x = the equivalents of OH⁻ added V represents the volume of the

solution.

$$[HA] = \frac{HA_i \text{-Base}}{V}$$

$$pH = pK_a + \log\left(\frac{[Base]}{[HA_i] \text{-}[Base]}\right)$$

Example:

$CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_2O$

Calculate the relative amounts of acetic acid and acetate ion present and pH values when 1 mol of acetic acid is titrated with sodium hydroxide.

0.1 mol of NaOH is added

When 0.1 mol of NaOH is added, 0.1 mol of acetic acid reacts with it to form 0.1 mol of acetate ion, leaving 0.9 mol of acetic acid. The composition is 90% acetic acid and 10% acetate ion.

pH = pKa + log 0.1/0.9 pH = 4.76 + log 0.1/0.9 pH = 4.76 - 0.95pH = 3.81

Titration curve of Glycine

Buffers

Significant changes in pH are harmful, ex. disruption of DNA double helix, disruption of protein structure, etc...

Buffers are solutions that resist abrupt and sudden changes in pH.

Dr. Diala Abu-Hassan

Preparation of buffers

 $\begin{aligned} \text{NaOH} + \text{CH}_3\text{COOH} &\rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CH}_3\text{COOH} \\ \text{Limiting Reagent} & \text{Salt} & \text{excess weak acid} \end{aligned}$

Buffer solution

Alkali Buffer: PH > 7.0 Weak base + Salt of the base $NH_4Cl \rightarrow NH_4^+ + Cl^ NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$

Excess H⁺ combines with OH⁻ Excess OH⁻ combines with $NH_4^+ \rightarrow NH_3$

Buffer Action

Resists changes in PH when small amount of Acids or Alkali are added.

Acidic Buffer = Weak acid + salt of the acid (Acid + strong Base)

 $\begin{array}{l} CH_{3}COONa \rightarrow CHCOO^{-} + Na^{+} \\ CH_{3}COOH \leftrightarrow CH_{3}COO^{-} + H^{+} \end{array}$

If an acid is added, the extra H⁺ combine with acetate \rightarrow un-dissociated HA, so [H+] remains constant. CH₃COO⁻ + H⁺ \leftrightarrow CHCOOH

If an alkali is added, the OH⁻ ions are removed by reactions with

un-dissociated and to form water so [H+] remains constant

 $CH_3COOH + OH \rightarrow CH_3COO + H_2O_{Dr. Diala Abu-Hassan}$

Figure 1.17 Buffer action. The addition of a strong acid, 1 M HCl, to pure water results in an immediate drop in pH to near 2. In contrast, the addition of the acid to a 0.1 M sodium acetate (Na⁺CH₃COO⁻) solution results in a much more gradual change in pH until the pH drops below 3.5.

Buffering action

Buffers work because the concentration of the weak acid and base is kept in the narrow window of the acid titration curve.

The buffer capacity is the amount of acid or base that can be added to a buffer solution before a significant change in pH occurs

■ ACTIVE FIGURE 2.16 Two ways of looking at buffers. In the titration curve, we see that the pH varies only slightly near the region in which [HA] = [A⁻]. In the circle of buffers, we see that adding OH⁻ to the buffer converts HA to A⁻. Adding H⁺ converts A⁻ to HA.

Factors affecting buffering capacity

Buffering Capacity depends on:

- 1. Buffer concentration
- 2. pKa of the buffer
- 3. The desired pH

How do we choose buffers?

Buffer selection criteria:

1. Suitable pKa for the buffer.

pKa ± 1 pH unit from the pH of the reaction pKa $\pm \frac{1}{2}$ pH unit is even better

- 2. No interference with the reaction.
- 3. Suitable buffering capacity.

4. No precipitation of reactants or products due to presence of the buffer.

5. Non biological nature of the buffer.
Example:

Calculate the ratio of the concentration of acetate ion to the concentration of acetic acid in a titration process of sodium acetate. The pKa of acetic acid is 4.75.

At:

- A. pH 4.75
- B. pH 9
- C. pH 3

pH= pK_a + log([Acetate ion] / [Acetic acid])

[Acetate ion] / [Acetic acid]= 10^(pH-pKa)

A. [Acetate ion] / [Acetic acid]= 1

B. [Acetate ion] / [Acetic acid]= $10^{4.25} = 17,782.79 = 18,000$

C. [Acetate ion] / [Acetic acid]= $10^{-1.75} = 0.0178 = ~0.02$

Buffer Calculations

Example 1:

A buffer consist of 0.2 mole CH3COO⁻ in 500 ml of 0.1 M CH3COOH. (Ka = 1.8×10^{-5} M). What is the PH?

 $PH = pKa + \log Base / Acid$ $PH = -\log 1.8 \times 10^{-5} + Log 0.4 / 0.1$

OR

```
Ka = [H+] x 0.4 / 0.1=1.8 x 10<sup>-6</sup>
[H+] = 4.5 x 10<sup>-6</sup> M
PH = -\log 4.5x 10^{-6}
= 5.4
```

Buffer Calculations

Calculate the mass of sod. propionate to be dissolved in 1L of 1M propionic acid (M.W = 96.08 gr/mole) to give a buffer of PH=4.5 (pKa = 4.87)

$$pH = 4.5$$
 $[H+]= 10^{-4.5}$

pKa = 4.87 $Ka = 10^{-4.87}$

Ka = [H+] [propionate] / [propionic acid]

```
[propionate] = 1 \times 10^{-4.87} / 10^{-4.5}= 0.427 \text{ M}Mass = 0.427 \text{ x} 96.08 = 41.0 \text{ gr}
```

Buffer Calculations

Calculate pH of a buffer when 18 ml of 0.1 M HCL is added to 32 ml of 0.1 M NH3 (pKb = 4.75)

Calculate excess NH3 and salt forms: HCL moles = $18/1000 \ge 0.1 = 1.8 \ge 10^{-3}$ NH3 moles = $32/1000 \times 0.1 = 3.2 \times 10^{-3}$ Ammonium salt = 1.8×10^{-3} Excess Ammonia = $3.2 \times 10^{-3} - 1.8 \times 10^{-3} = 1.4 \times 10^{-3}$ Molar conc. of salt = $1.8 \times 10^{-3} / (50/1000)$ $= 3.6 \times 10^{-2}$ Molar conc. of NH3 = $1.4 \times 10^{-3} / (50/1000)$ $= 3.2 \times 10^{-2}$ $Kb = [NH4^+] [OH^-] / NH3$ $10^{-4.75} = (3.6 \text{ x } 10^{-2} \text{ x } [OH^{-1}]) / 3.2 \text{ x } 10^{-2}$

$$[OH-] = 0.889 \times 10^{-4.75}$$

= 1.58 x 10⁻⁵ M
p OH = - log 1.58 x 10⁻⁵
= 4.8
p H = 14- 4.8
= 9.2

OR

$$p OH = p Kb + log [Salt] / [weak Base]$$

$$p OH = 4.75 + log [3.6 x 10-2] / [3.2 x 10-2]$$

$$= 4.75 + 0.05$$

$$= 4.8$$

$$PH = 14 - 4.8$$

$$= 9$$

pH in the body

-Blood pH is between 7.36 and 7.44

-Intracellular pH is between 6.9 and 7.4

-The widest range of extracellular pH over which the metabolic functions can be maintained is 6.8 to 7.8

- When pH< 7.36, acidosis results. pH<7.25 life threatening

-Acidosis causes CNS depression and coma

-pH<7 death occurs.

Buffer systems in the body:

The bicarbonate-carbonic acid buffer system (main ECF)
 The hemoglobin buffer system in RBCs
 The phosphate buffer system in all types of cells
 The protein buffer system of cells and plasma.

-Buffers act quickly but not permanently

-Respiratory and renal mechanisms essentially act for final elimination.

-Buffers do not remove acids or replenish alkali in the body

Types of acids produced in the body

Two types of metabolic acids produced:

- 1. Fixed Acids, non-gaseous
- Phosphoric and Sulphuric acids
- Produced from Sulphur and Phosphorus of proteins and lipoprotein
- Organic Acids as pyravic, lactic, ketoacids (e.g acetoacetic, B-hydroxy butyric acid and uric acid). Buffered and then H+ is excreted by the kidneys
- 2. Volatile Acids

The physiological importance = Carbonic acid Amount produced daily equivalent to 36 liters of 1.0 M acids Excreted as CO2 by the lungs 20,000 mEq/day

Acidosis

-Metabolic acidosis:

Starvation, untreated diabetes, high-protein diet, low-fat diet

-Respiratory acidosis

- When pH< 7.36, acidosis results. pH<7.25 life threatening

-Acidosis causes CNS depression and coma

-pH<7 death occurs.

Alkalosis

-pH> 7.44

-pH>7.55 is dangerous and >7.60 results in death.

-Metabolic alkalosis:

Excess clinical administration of salts and metabolic acids as Na lactate and NaHCO3 Deamination of amino acids, citrate Severe vomiting

-Respiratory alkalosis :

Hyperventilation (heavy breathing) Hysteria, anxiety or altitude sickness

Buffer systems in the body:

1.The bicarbonate-carbonic acid buffer system (ECF)

- 2. The hemoglobin buffer system in RBCs
- 3. The phosphate buffer system in all types of cells
- 4. The protein buffer system of cells and plasma.

The bicarbonate–carbonic acid buffer system in blood

Bicarbonate buffer system

The bicarbonate–carbonic acid buffer system in blood

 $CO_{2(g)} + H_2O_{(I)} \leftarrow H^+_{(aq)} + HCO_3^-_{(aq)}$

pKa of H_2CO_3 is 6.1, while the pH of human blood is 7.4

$$7.4 = 6.1 + \log [HCO_3^{-1}] / [CO_2]$$

 $1.3 = \log [HCO_3^{-1}] / [CO_2]$
 $[HCO_3^{-1}] / [CO_2] = 20$

 \longrightarrow most of the dissolved CO₂ is present as HCO₃⁻ Normal values: pH = 7.4 pCO₂ = 40 mm Hg (~ 1.2 mM) [HCO₃⁻] = 25 mM

What happens when the pH of the blood drops?

- Low pH means more H⁺

 $H_{(aq)}^{+} + HCO_{3}^{-}_{(aq)} \longleftrightarrow H_{2}CO_{3(aq)} CO$ $H_{2}CO_{3(aq)} \longleftrightarrow CO_{2(aq)} + H_{2}O_{(l)}$ $CO_{2(aq)} \longleftrightarrow CO_{2(g)} \text{ exhalled by the lungs}$

-Aspirin

-High altitudes - rate of respiration increases.

-Athelete example

What happens when the pH of the blood increases?

- Higher pH means more OH-

 $NaOH + H_2CO_3 \longrightarrow NaHCO_3 + H_2O$

 $CO_2 + H_2O \longrightarrow H_2CO_3$ to replace the consumed acid

 $[CO_2]$ decrease and respiration decrease to reduce the rate of CO_2 consumption.

 $[HCO_3^{-1}] / [CO_2] = 25 \text{ mM} / 1.25 \text{ mM} = 20$

Buffer range = $6.1 \pm 1 = 5.1-7.1$

The normal ratio of $[HCO_3^-/CO_2]$ in the blood is about 20 to 1 at pH 7.4. What is this ratio at pH 7.3 (acidosis) and at 7.5 (alkalosis)?

Regulatory Mechanism against changes in [H+] of blood

- Buffer Mechanism- first line of dense
- Respiratory Mechanism -second line of defense
- Renal Mechanism- third line of defense

The first two lines of defense keep the [H+] from changing too much until the more slowly responding third line of defense, the kidney's can eliminate the excess acid or base from body

The equation

 Relationships of the bicarbonate buffer system to the lungs and the kidneys.

Roles of lungs and kidneys

- Maintaining blood is balanced by the kidneys and the lungs
- Kidneys control blood HCO₃⁻ concentration ([HCO₃⁻])
- Lungs control the blood CO₂ concentration (P_{CO2})

Protein Buffers

-Because of the presence of the dissociable acidic (-COOH) and basic (-NH2) groups, proteins act as buffers.

-Particularly the imidazole group of the side chain of histidine residue (pKa = 7.3)

Proteins, specifically Albumin, account for 95% of non-carbonate buffering action in plasma (has 16 His/mole)

Phosphate Buffer systems

-Phosphate anions and proteins are important buffers that maintain a constant pH of ICF.

-Intracellular and tubular fluids of kidney

- $H_2PO_4^{-1}$ dissociates to H + and HPO₄⁻²

-pKa is 7.1-7.2

- In RBCs 2,3 BPG is 4.5 mM contributing to ~16% Non carbonate buffer function.

- Glu-6P, ATP act as buffers

 $H^+ + Na_2HPO_4$

 $OH^{-} + NaH_2PO_4$

Hemoglobin (Hb) Buffer

-Major intracellular buffer of the blood

-Hb has a high number of His (38 molecules/mole of Hb)

-Works cooperatively with the bicarbonate buffer system

-It buffers CO₂ and H₂CO₃

More details in the 3rd year

Buffer systems of the body

HG. 4.9. Buffering systems of the body. CO_2 produced from cellular metabolism is converted to bicarbonate and H⁺ in the red blood cells. Within the red blood cells, the H⁺ is buffered by hemoglobin (Hb) and phosphate (HPO₄²⁻) (*circles 4 and 6*). The bicarbonate is transported into the blood to buffer H⁺ generated by the production of other metabolic acids, such as the ketone body acetoacetic acid (*circle 5*). Other proteins (Pr) also serve as intracellular buffers. See the text for more details.

Done or not yet?!

Change FB status to "in a relationship" with biochemistry textbook

