

Number >>

10

Doctor

Hamza Alduradi

Done By

Nael Jadallah

Corrected By

- It is a number that you can calculate using certain formula
- Helps you take decision regarding to your hypothesis
- Helps you at the end of calculation to decide either to keep or reject the null hypothesis (determine if there is an association between dependent and independent variables)
- We use it when we have dependent variable and in-dependent variable that are both nominal

Example:

Variable 1 → Do you belong to Democrat party or Republican Party?

Variable 2 \rightarrow Are you favor or oppose of using weapons?

Also we may add neutral to variable 2

Research question \rightarrow is there an association between your political party and your position of using weapons.

We use chi-square because both variables are nominal

Important condition:

- 1) Both variable must be nominal
- 2) Groups must be independence
- 3) Sample must contain at least 20 person Usually hundreds or thousands
- 4) Each cell must contain at least 5 observations Example

	Favor	Oppose
Democrat	1111 1111 11	
republican	IIII III	1111 1111 1111 1

- 1) we have more than 20 person
- 2) we have more than observation in each cell

So we can use chi-square

1) we have more than 20 person

2) we don't have more than observation in all cell

So we can't use chi-square

	Favor	Oppose
Democrat	П	
Republican	1111 111	1111 1111 1111 11

	Favor	Oppose
Democrat	Ш	1111 11
Republican	П	IIII I

1) we don't have more than 20 person

2) we don't have more than observation in all cell

We can't use chi-square

How to calculate chi-square?

• We can calculate chi-square by this formula

$$X^{2} = \sum (O - E)^{2}$$

 χ^2 = The value of chi square

O = The observed value

E = The expected value Σ (O - E)² = all the values of (O - E) squared then added together

- observed value: is the number that i Collect from people
- Expected value :

Expected frequency = row total x column total

Grand total

	Favor	Neutral	Oppose	f _{row}
Democrat	1º	2 °	3 ³⁰	A ⁵⁰
Republican	4	5 ¹⁵	6 ¹⁰	40
f column	\mathbf{B}^{5}	25	40	n = 90

So if I want to calculate the expected value for who are democrat and favor for weapons use

 $A*B/n \rightarrow 25*50/90 = 13.9$ (for cell 1) then I do it to all the 6 cells

So chi-square is →

$$\chi^{2} = \frac{(10-13.89)^{2}}{\mathbf{1}} + \frac{(10-13.89)^{2}}{\mathbf{2}} + \frac{(30-22.2)^{2}}{\mathbf{3}} + \frac{(30-22.2)^{2}}{\mathbf{3}} + \frac{(15-11.11)^{2}}{\mathbf{4}} + \frac{(15-11.11)^{2}}{\mathbf{5}} + \frac{(10-17.8)^{2}}{\mathbf{6}}$$

So the calculated chi-square is 11.03

Next step I use the calculated chi-square in a process of 6 step and at the end I can answer my research question.

Steps in test hypothesis

For the previous example (party and weapons)

First step: determine the appropriate test

- 1. Party Membership (2 levels) and Nominal
- 2. Voting Preference (3 levels) and Nominal

So I can use chi-square

Second step: establish level of significance

Usually we want our alpha to be 0.05

This mean that my result at the end (95% confidence) so I can say I am 95% confidence that there is association or there is no association

NOTE: some people may choose another alpha

Third step: determine the hypothesis

Write down your hypothesis

Ho (null hypothesis): There is no difference between Democrat & Republican in their opinion on gun control issue in the American population

Ha (my hypothesis): There is an association between responses to the gun control survey and the party membership in the American population.

NOTE: we should determine the population level

Fourth step: calculating the statistics

We calculate the chi-square as we do

Calculated chi-square = 11.03

Fifth step: determine degree of freedom

$$Df = (Row - 1) (Column - 1)$$

In the example, we have 2 rows and 3 column

So the Df is \rightarrow (2 – 1) (3 – 1) = 2

NOTE: it is an important number to calculate in any chi-square test

So up to now we have 3 thing

1) Alpha =
$$0.05$$

3) chi-square = 11.03

Then use this number in step number 6

Sixth step: compare computed test statistic against a tabled/critical value

In this step I compare my calculated chi-square with critical chi-square

If calculated chi-square > critical chi-square then → null hypothesis is rejected

If calculated chi-square < critical chi-square then → null hypothesis is accepted

There is no scenario they are become equal (if they equal reject null hypothesis)

Degrees of Freedom Probability Non-Signi-Highly significant ficant significant 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 1 0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 2 0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.60 5.99 9.21 3 0.35 0.58 1.01 1.42 2.37 3.66 4.64 6.25 7.82 11.34 0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 5 1.14 2.34 3.00 4.35 6.06 7.29 9.24 11.07 15.09 1.61 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 1.63 16.81 7 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 20.09 9 6.39 8.34 12.24 3.32 4.17 5.38 10.66 14.68 16.92 21.67 10 7.27 3.94 4.86 6.18 9.34 11.78 13.44 15.99 18.31 23.21

Table 5.3. Chi-square value

- Sometime instead of write degree of freedom they write (r)
- Critical chi-square is the number were alpha and Df meet each other
- Don't memorize the table it will be given for you in the exam

	$P(X \le x)$							
	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
ŗ	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
í	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21

In our example:

Df (r) \rightarrow 2

Alpha \rightarrow 0.05

So the critical chi-square \rightarrow 5.991

So now, I have

1) Calculated chi-square \rightarrow 11.03 2) critical chi-square \rightarrow 5.99

Last thing

Calculated chi-square > critical chi-square → I will reject the null hypothesis So we are 95% confidence that there is an association between your political party and your position of using weapons In the population level of US

NOTE: remember to write your confidence Also you cannot be 100% confidence

To sum up

- 1. Determine the appropriate test
- 2. Establish the level of significance: α
- 3. Formulate the statistical hypothesis
- 4. Calculate the test statistic
- 5. Determine the degree of freedom
- 6. Compare computed test statistic against a tabled/critical value

Example:

I have a sample of 100 patient and I wonder if there is an association between smoking cigarette and developing lung cancer

	Cancer	No-cancer	row
Smoker	1 ³⁵	2 10	45
Non-smoker	3 ⁵	4 50	55
column	40	60	N=100

First step → both are nominal SO I use chi-square Second step → alpha is 0.05

Third step \rightarrow

Ha: there is an association between smoking cigarette and developing lung cancer
Ho: there is **No** association between smoking cigarette and developing lung cancer

Fourth step → calculate chi-square

First, calculate expected value

Cell $1 \rightarrow (40)^*(45)/100 = 18$

Cell 2 \rightarrow (60)*)45)/100 = 27

Cell 3 \rightarrow (40)*(55)/100 = 22

Cell $4 \rightarrow (60)*(55)/100 = 33$

Second Calculate chi-square for each cell then add them together

Cell $1 \rightarrow (35-18)^2/18 = 16.06$

cell 2 \rightarrow (10-27)²/27 = 10.70

Cell 3 \rightarrow (5-22)² / 22 = 13.14

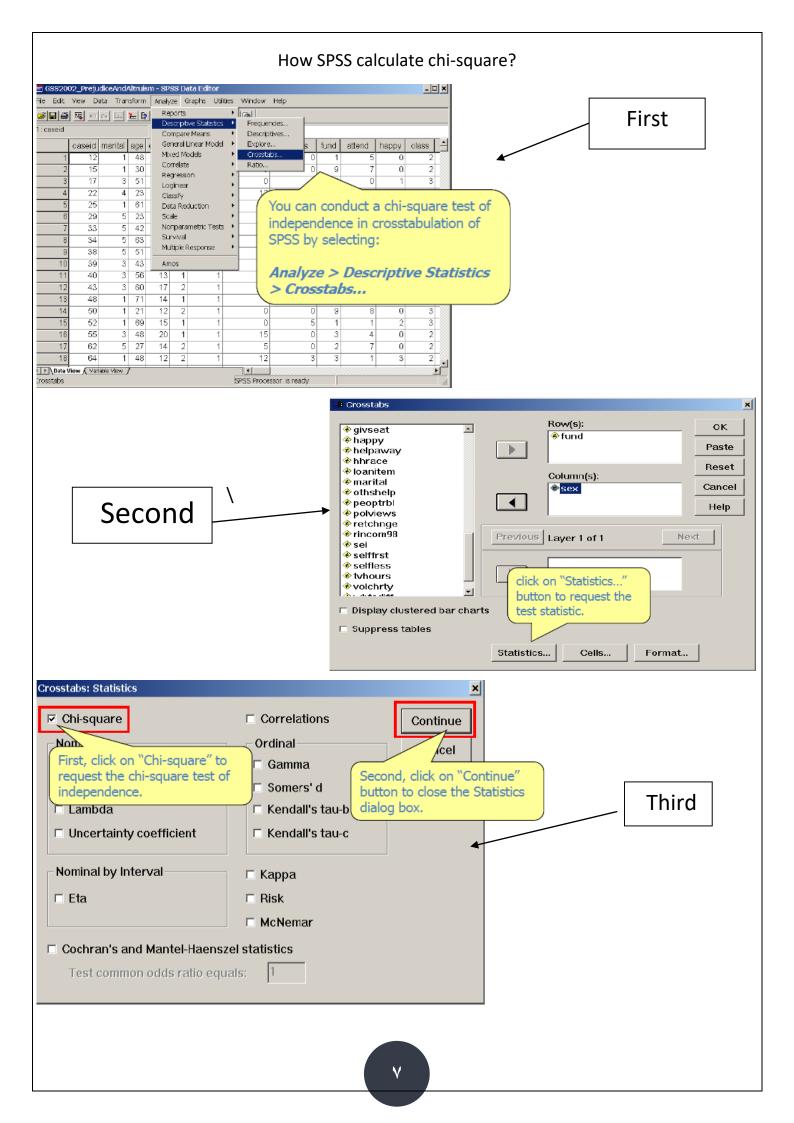
cell 4 \rightarrow (50-33)²/33 = 8.76

Chi-square \rightarrow 16.06 + 10.70 + 13.14 + 8.76 = 48.66

Fifth step \rightarrow degree of freedom

$$Df \rightarrow (2-1)*(2-1) = 1$$

Sixth step \rightarrow find the critical chi-square


Critical chi-square → 3.841

Since calculated chi-square > critical chi-square → null hypothesis is rejected

So I am 95% confidence that there is an association between smoking and developing lung

cancer

	$P(X \leq x)$							
	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21

I end up with

HOW FUNDAMENTALIST IS R CURRENTLY * RESPONDENTS SEX Crosstabulation

			RESPOND	RESPONDENTS SEX	
1			1 MALE	2 FEMALE	Total
HOW	1 FUNDAMENTALIST	Count	75	99	174
FUNDAMENTALIST IS R CURRENTLY		Expected Count	74.9	99.1	174.0
13 K CORKLINICI		Kesiddal Std. Residual	.1 .0	1 .0	
	2 MODERATE	Count	107	161	268
		Expected Count	115.4	152.6	268.0
1		Kesidual	-8.4	8.4	
1		Std. Residual	- 8	7	
	3 LIBERAL	Count	79	85	164
		Expected Count	70.6	93.4	164.0
1		Residual	8.4	-8.4	
		Std. Residual	1.0	9	
Total		Count	261	345	606
<i>U</i>	Value	Expected Count	261		
	value		/ T	n the tab	Ja Chi-

Chi-Square Tests

Value df (2-sided)

Pearson Chi-Square 2 8218 2 244

 Value
 df
 (2-sided)

 Pearson Chi-Square
 2,821°
 2
 .244

 Likelihood Ratio
 2,815
 2
 .245

 Linear-by-Linear
 .832
 1
 .362

 Association
 .806
 .806
 .806

 a. O cells (.0%) have expected count less than 5. The minimum expected count is 70,63. In the table Chi-Square Tests result, SPSS also tells us that "0 cells have expected count less than 5 and the minimum expected count is 70.63".

The sample size requirement for the chi-square test of independence is satisfied.

He did not give the critical value but he give me a better thing, which is P value

P value →

If alpha value > p value → null hypothesis is rejected

If alpha value < p value → null hypothesis is accepted

Alpha = 0.05 (as usual) P value = 0.244

So If alpha value < p value → null hypothesis is accepted

So I am 95% confidence that there is no association

(for better understanding watch video 10 from 39:44 to the end)

Best of luck