

Review:

- Enzyme kinetics is the study of chemical reactions that are catalyzed by enzymes.
- The relationship between the reaction's velocity (rate) and concentration of reactant(s) is represented by rate law => v = k[A]
- k is a constant and its units depend on the reaction; it can have a unit of time⁻¹
 when there is only one reactant, or it can have a unit of time⁻¹ × concentration⁻¹
- for any reaction involving enzymes a graph can be used to analyze their kinetics

*plots with simple enzymes follow a hyperbolic path, with the upper limit being the maximum velocity of the reaction (V_{max})

• the Michaelis-Menten equation describes the graph of the enzyme kinetics

For a reaction:

K_M describes the affinity of an enzyme to its substrate

- this is because it sums the rate of dissociation of the enzyme substrate complex (k₋₁ and k₂) divided by the rate of formation of the enzyme substrate complex (k₁)
 - \circ therefore, the smaller a K_M value is, the higher the affinity of the enzyme.
- remember: K_M is equal to the amount of substrate concentration needed to reach $V_{1/2}$, so the smaller concentration needed to reach $V_{1/2}$, the higher the enzyme's affinity.
- despite this, a better way of describing the affinity is by ignoring k₂, and only using k₁ and k₋₁: this value is called K_D (dissociation constant)

V_{max}:

• the V_{max} is not affected by the substrate concentration, and the only way to affect it is to change the enzyme concentration.

<u>Км:</u>

- think of it like this, a car has a maximum speed, the only way to increase its maximum speed is to increase the power of the engine.
 - in relation to K_M, it is <u>not</u> affected by the enzyme concentration, because it is an inherent property of the enzyme; in order to reach half of the maximum speed in a slow car or a fast car, you need to press the gas pedal halfway down.
- K_{cat} (turnover number) is a value that describes how quickly one enzyme can act
 - It is the concentration of substrate molecules converted to product per unit time when the enzyme is fully saturated.
 - \circ K_{cat} = V_{max} / [Enzyme]_T
 - \circ K_{cat} is a constant for any given enzyme, meaning changing the enzyme concentration will affect V_{max}, but not K_{cat}.
 - The unit for K_{cat} is seconds⁻¹ and it tells you how many reactions an enzyme can catalyze per unit time, which is usually seconds.

Table 6.2 Turnover Numbers and Km for Some Typical Enzymes			
Catalase	Conversion of H ₂ O ₂ to H ₂ 0 and O ₂	4×10^7	25
Carbonic Anhydrase	Hydration of CO_2	$1 imes 10^6$	12
Acetylcholinesterase	Regenerates acetylcholine, an important substance in transmission of nerve impulses, from acetate and choline	$1.4 imes 10^4$ 9	0.5×10^{-2}
Chymotrypsin	Proteolytic enzyme	$1.9 imes 10^{2}$ 6	5.6×10^{-1}
Lysozyme	Degrades bacterial cell-wall polysaccharides	0.5	6×10^{-3}

For example, according to this graph lysozyme can do 0.5 reactions per second, while catalase is able to do 40 million reactions per second.

Enzyme Activity:

- Remember: rate of reaction is the change in concentration per unit time
- In order to measure enzyme activity, we measure the number of <u>moles</u> (not molars) of substrate disappearing or product forming per unit time.
 - Therefore, enzyme activity has a unit of moles/time
- In order to get rid of the volume in the concentration, we can multiply the rate of the reaction by the volume in order to get the enzyme activity.
 - This is some dimensional analysis for you to understand what happens to the units

Enzyme activity = rate of reaction × reaction volume

 $\frac{Moles}{time} = \frac{moles}{volume \times time} \times \frac{volume}{volume}$

Moles/time = moles/time

Enzyme Specificity:

- It is a measure of enzyme purity and quality
- It is calculated as moles of substrate converted per unit time per unit mass of enzyme (moles / (time × mass)

 $\circ Specific activity = \frac{enzyme \ activity}{mass \ of \ enzyme(grams)}$

Turnover Number:

- K_{cat} is related to specific activity
 - K_{cat} = specific activity × molecular weight of the enzyme

Lineweaver-Burk Equation:

Realistically there are disadvantages in using a hyperbolic plot in real world situations, in our case it is because the enzyme velocity that is determined experimentally will never reach V_{max} and this is due to the properties of hyperbolic plots. Because we can never determine V_{max} experimentally, we cannot determine $V_{1/2}$ and therefore K_M . In order to start having more accurate values, two scientists named Lineweaver and Burk started plotting the reciprocal of the Michaelis-Menten equation, and this resulted in a linear graph.

Note: Even if we want to approximate Vmax using Michaelis-Menten equation, we would need to repeat the experiment a lot of times to get an accurate value (by approximation), which would need a lot of money for one enzyme.

- This is the graph of $\frac{1}{V0} = \frac{1}{Vmax} + \frac{KM}{Vmax} \times \frac{1}{[S]}$
- This plot is also known as the double reciprocal plot.

- It follows the standard graph of linear equations y = mx + b, with the y-axis being 1/V, and the x-axis being 1/[S]
 - $\circ~$ Because of this, we can say with confidence that the slope is equal to K_M/V_{max} , the Y-intercept is equal to $1/V_{max}$, and the X-intercept is equal to $-1/K_M$

Mechanisms of Regulation

Aerobic vs. Anaerobic Respiration:

- In the case of anaerobic metabolism, the enzyme that converts pyruvate to lactate and vice versa is called lactate dehydrogenase; during anaerobic respiration in the skeletal muscles, pyruvate is converted to lactate, but in the cardiac muscles, lactate is converted back to pyruvate by the same enzyme, why?
- They are the same enzyme, but are slightly different from each other, and they are defined as **isoenzymes**

Isoenzymes:

- Isoenzymes are enzymes that can act on the same substrate and produce the same product.
- They are produced by different genes that vary only slightly.
- They are distributed in different tissues (like in cardiac and skeletal muscles).
- Different methods of regulation, and different catalytic activity.

Example: Lactate Dehydrogenase (LDH):

- LDH is a tetramer, meaning it has 4 subunits in its quaternary structure
- They have two different types of subunits, M for skeletal muscle and H for heart muscle
- The subunits combine in different ways to form 5 different isoenzymes (LDH 1-5)
- 2 of the 5 enzymes are homotetramers (only H or only M subunits), the rest are heterotetramers
 - The H-subunit homotetramer does lactate oxidation, converting lactate to pyruvate, while the M-subunit homotetramer does pyruvate reduction, converting pyruvate to lactate, they are both able to do both reactions but their efficiency is more towards their respective reaction
 - The LDH found in the heart is much better at doing lactate oxidation, and the LDH found in the skeletal muscle is much better at doing pyruvate reduction

Have fun