

Bone Ossification

Practical part

Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

Bone Development

 Osteogenesis (ossification)—bone tissue formation

Stages:

- Bone formation—begins around 8th week of development
- Postnatal bone growth—until early adulthood
- Bone remodeling and repair—lifelong

Postnatal Bone Growth

- Interstitial growth:
 - ↑ length of long bones

- Appositional growth:
 - —
 † thickness and remodeling of all bones by osteoblasts and osteoclasts on bone surfaces

Ossification

The process by which bone forms.

Different methods of development in which both replace preexisting connective tissue with bone, both methods lead to the same structure in mature bone

Intramembranous Ossification

(prenatal)

- 1 Ossification centers appear in the fibrous connective tissue membrane.
- Selected centrally located mesenchymal cells cluster and differentiate into osteoblasts, forming an ossification center.

- **B**one matrix (osteoid) is secreted within the fibrous membrane and calcifies.
 - Osteoblasts begin to secrete osteoid, which is calcified within a few days.
 - Trapped osteoblasts become osteocytes.

- (3) Woven bone and periosteum form.
- Accumulating osteoid is laid down between embryonic blood vessels in a random manner. The result is a network (instead of lamellae) of trabeculae called woven bone.
- Vascularized mesenchyme condenses on the external face of the woven bone and becomes the periosteum.

- 4 Lamellar bone replaces woven bone, just deep to the periosteum. Red marrow appears.
- Trabeculae just deep to the periosteum thicken, and are later replaced with mature lamellar bone, forming compact bone plates.
- Spongy bone (diploë), consisting of distinct trabeculae, persists internally and its vascular tissue becomes red marrow.

Endochondral Ossification

1 Bone collar forms around hyaline cartilage model.

Area of deteriorating cartilage matrix

2 Cartilage in the center of the diaphysis calcifies and then develops cavities.

3 The periosteal bud invades the internal cavities and spongy bone begins to form.

4 The diaphysis elongates and a medullary cavity forms as ossification continues. Secondary ossification centers appear in the epiphyses.

The epiphyses ossify. When completed, hyaline cartilage remains only in the epiphyseal plates and articular cartilages.

Secondary ossification center

Zone of reserve cartilage (resting cartilage)

Zone of proliferation

Zone of hypertrophy and calcification

Ossification zone

Ossification zone

Secondary center of ossification

Growth in the Epiphyseal Plate

What type of bone formation is taking place?

Clinical Application

Osteoporosis